اتوماتیک‌پیادگیر سلولی و کاربردهای آن

محترم‌پذیر (استاد)
حمید بیگی (دانشیاه دکتری)
سموئل طاهر خانی (کارشناس ارشد)
آژم شکاره محاسبات نرم، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی ابرکریم
و مرکز مطالعات فیزیک تکنولوژی و ریاضیات، پژوهشگاه دانشگاه صنعتی ابرکریم

در این نوشته، مدل جدید تحت عنوان اتوماتیک‌پیادگیر سلولی (CLA) معرفی می‌شود و رفتار آن در آزمون‌های مختلف برای مطالعه و ارزیابی قرار می‌گیرد. براساس این مدل، یک مجموعه اتوماتیک‌پیادگیر (LA) که به‌عنوان گزینه‌های مختلف، نظریه نشان می‌دهد. هر اتوماتیک در این مدل براساس یک کوکوروی مبتنی بر مقدار فضای فرضی کاربردی مورد بررسی قرار می‌گیرد و نسبت به رفتار همسازی‌های خود، از طرف می‌گیرد. در مقایسه با انرژی پیام‌های چکنیون برهان پس بزرگ‌تر، این مدل پیشنهاد کرده‌اند که برای انتخاب افزایش کردن از این کارا باید به موثرتر

انتشار شیوع و پردازش تصاویر اشاره خواهد شد.

مدیریت

اتوماتیک سلولی در اواخر دهه 1430 و نونیومان مطرح شد. سیس ریاضیاتی به سمت استاندارد پایان آن را در اثرنیابی برای اتوماتیک سلولی پیشنهاد کرده‌اند. این اتوماتیک سلولی با دانشگاه، از طرف مناسبی اطلاعاتی پایین دارد و به‌همین دلیل برای برخی کاربردهای مطرح تیپسنت. تطبیق اطلاعاتی این سیستم‌ها را می‌توان به کمک پیادگیر افزایش داد.

اتوماتیک‌پیادگیر اولین بار توسط M. غدوتین در اواخر دهه 1460 در شوروی سایر استاتریم شد. اتوماتیک‌پیادگیر در محیط مشترک تصادی عمل می‌کند و توانایی ابتکار و راه‌یافتن دیگر راه‌های وجود داشته باشد. احتمال انحلام عملیات خود را در اثر واکنش و این طیف کارایی خود را بهبود می‌بخشد.

در این نوشته، با توجه به برگه‌های دو مدل فوق، مدل جدیدی به‌نام اتوماتیک‌پیادگیر سلولی (CLA) پیشنهاد می‌شود. در این مدل، هر سلول در اتوماتیک سلولی مجهز به یک اتوماتیک‌پیادگیر است که وضعیت را مشخص می‌کند. در اتوماتیک‌پیادگیر، براساس یک کوکوروی باید به طور صرفاً اخرین راه انتخاب کنند. در حالی که در اتوماتیک‌پیادگیر سلولی از خود کردن می‌تواند به طور صرفاً چکنیون پس بزرگ‌تر باشد. این مدل P. گزینه‌های دلیل C. A.) مشابه

در ادامه، ضمن بررسی اتوماتیک‌پیادگیر سلولی و اتوماتیک‌پیادگیر، به معرفی مدل جدید اتوماتیک‌پیادگیر سلولی خواهیم پرداخت. سپس با

شیرف شمایداری بیست و پنجم

54
در این زمانها همسایگی‌های مهم در انتهای سلولی در جدول زیر نشان داده می‌شوند:

<table>
<thead>
<tr>
<th>$a_{i}(t)$</th>
<th>$a_{i}(t+1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1,1)$</td>
<td>0</td>
</tr>
<tr>
<td>$(1,0)$</td>
<td>1</td>
</tr>
<tr>
<td>$(0,1)$</td>
<td>1</td>
</tr>
<tr>
<td>$(0,0)$</td>
<td>1</td>
</tr>
</tbody>
</table>

شکل 2. انواع همسایگی‌های مهم در انتهای سلولی.
امنیت‌های بادکر در لغت کتاب مشابه‌دار

شاید ایجاد شده با یادآوری یا تاکید که این صورت معمولاً دوره‌های کوتاه دارند. گاهی نیز اطلاعاتی به وجود اورده‌نکه به عنوان یک پیش‌بینی از نظر III

فضا و زمان می‌تواند، مثلاً نشاند. این دسته شامل قوانین ۴۲، ۴۳، ۴۵، ۴۶، ۵۱، ۵۳، ۵۵ است.

در نهایت، مهم‌ترین دسته مربوط به قوانینی است که متعلق به هیچ IV

یک از سه دسته فوق نبوده و رفتار زیبایی از خود نشان می‌دهد. قوانین این دسته رفتار سیاسی در دانشگاه‌ها و مختل‌هایی مطرح شده و گاهی خاصی ایجاد می‌کند. ادعای، شکست که اینگونه قوانین از ویژگی‌های جهنمی‌هایی روزدارند. این دسته شامل قوانین ۵۵۰ است.

امنیت‌های سیلوی کاربردی فراوانی دارد که درخیز از آنها یک برابر اندازه‌سنجی و اعداد تصادفی هستند.

و مطالعه زبان‌های رسی [۱۱]

امنیت‌های بادکر

امنیت‌های بادکر نموداری است که توانایی انجام تعامل مدیری امکان‌پذیر است. هر عمل انجام شده توسط محیط ارتزابایی می‌شود و پاسخی به امنیت‌های بادکر داده می‌شود. امکانات بادکر با استفاده از این پاسخ عمل خود را یاری مرسوم بیست است. امکانات کنترل

شکل ۳ نمودار تغییر وضعیت امنیت‌های

شکل ۳ نمودار تغییر وضعیت امنیت‌های

شکل ۳ نمودار تغییر وضعیت امنیت‌های

شکل ۳ نمودار تغییر وضعیت امنیت‌های
امتیازات کریتیکی: رفتار این اتوماتا به‌هکاک پایش نامطلوب هستند. لذا است. اما برای پایش مطلوب هر وضعیت L_{N} به وضعیت $\psi_{i} = (i+1, N, N, +1)$ منطق می‌شود. بنابراین همیشه N پایش نامطلوب ممکن لازم است تا اتوماتا رفتار خود را عوض کند. نمودار تغییر وضعیت این اتوماتا برای پایش نامطلوب مانند اتوماتا L_{N} (شکل 6)، و برای پایش مطلوب مطابق شکل 7 است.

مطابق شکل 8 اتوماتا کریتیکو: نمودار تغییر وضعیت این اتوماتا مطابق شکل 8 است. داده‌های خالی وضعیت‌های رفتار α و داده‌های تویور β، وضعیت‌های رفتار α را می‌دهد. در این شکل با U به معنی پایش مطلوب است. شکل دارای دو قسمت عمودی (H) و یک قسمت افقی (V) است. قسمت عمودی H تغییر وضعیت اتوماتا کریتیکو.

شکل 5 نمودار تغییر وضعیت اتوماتا کریتیکو.

شکل 6 نمودار تغییر وضعیت اتوماتا کریتیکو.

شکل 7 نمودار تغییر وضعیت اتوماتا کریتیکو.

شکل 8 نمودار تغییر وضعیت اتوماتا کریتیکو.
اتوماتیک یادگیری سلولی

اتوماتیک یادگیری سلولی مدلی است برای سیستم‌هایی که از اجزای ساده دسته‌بندی شده‌اند و رفتارهای جریان براساس رفتارهای زمان‌گذار و نیز تجربیاتی و تغییراتی سطحی شروع به کار می‌نمایند. این رفتارها، که در زمان‌های کمتر از طول زمان بستگی یافته‌اند و به دست اورده‌ها می‌باشند.

شکل 9 اتوماتیک یادگیری سلولی

شکل‌ها و نقشه‌ها در ارائه شده در این صفحه به اتوماتیک یادگیری سلولی منبع داده‌ها مربوط است. این صفحه شامل شکل‌های و نمودارهایی است که نمایش‌دهنده وضعیت‌های اتوماتیک یادگیری سلولی، در حالات مختلفی بر اساس شرایط و پارامترها هستند.

CLA

(CLA)
بررسی نتایج آزمایشات

در این قسمت فتران انتخابهای پیاده‌گیری سلولی برای اتوماتا و قوانین مختلف مورد تحقیق قرار گرفته است. در ادامه به بررسی از CFA اتوماتو مورد استفاده در آزمایش‌ها اشاره می‌شود.

قانون عمومی: نحوه‌ی نامگذاری سلول‌ها در این قوانین برابرس

شکل 11: قوانین تعریف مدل زیر هر اتوماتا در CFA است. اگر اتوماتا رفتار ۰۱ انتخاب کرده باشد. سلول آن اتوماتا به صورت ۰۱ و در غیر این صورت جریمه می‌شود.

قانون عمومی: نحوه‌ی نامگذاری سلول‌ها در این قوانین برابرس

شکل 12: انتخابهای ۱۲ هر اتوماتا در CFA است. اگر انتخاب کرده‌ایم نشان داده شود.

AND (A1, A2, A3, B1, B2, B3, C1, C2, C3)

با توجه به اینکه ارزش عبارت منطقی نرفت و روند اتوماتا (پاسخ محیط است. برای ارزیابی عبارت منطقی سلول پدر درودست و سلول خالی «خاله» در نظر گرفته شده است. می‌توان قانون طوق راکانتونی دیگری نیز به کاربرد. برابرس قانون قانون فرقی رگ اتوماتا در CFA رفتاری انتخاب کرده باشد. در غیر این صورت رفتار انتخاب شده توسط اتوماتا جریمه می‌شود.

A1 A2 A3 B1 B2 B3 C1 C2 C3

شکل 13: نحوه‌ی نامگذاری سلول‌ها.
این قانون به صورت زیر تعريف می‌شود:

\[\text{OR}((\text{NOT}(A'), B'), (\text{NOT}(C'), A'), (\text{NOT}(C'), \text{NOT}(A'), A'), (\text{NOT}(C'), \text{NOT}(B'), \text{NOT}(C'), \text{NOT}(A'), \text{NOT}(B'), \text{NOT}(C'), \text{NOT}(B'), \text{NOT}(C'))) \]

قانون خطوط عمودی: هدف از این قانون آن است که انواعی در طی زمانی باشد که سایر تولید کننده کارداری به نظر، الگویی مطابق شکل ۱۳ ایجاد کند.

شکل ۱۴ الگوهاي مطلوب برای توليد چتبین الگویي را نشان مي‌دهد.

قانون خطوط افقی: هدف از این قانون آن است که انواعی در طی زمانی باشد که سایر تولید کننده کارداری به نظر، الگویی مطابق شکل ۱۵ ایجاد کند.

شکل ۱۶ الگوهاي مطلوب برای توليد چتبین الگویي را نشان مي‌دهد.

قانون خطوط عمودی: هدف از این قانون آن است که انواعی در طی زمانی باشد که سایر تولید کننده کارداری به نظر، الگویی مطابق شکل ۱۶ ایجاد کند.

شکل ۱۷ الگوهاي مطلوب برای توليد چتبین الگویي را نشان مي‌دهد.

قانون خطوط افقی: هدف از این قانون آن است که انواعی در طی زمانی باشد که سایر تولید کننده کارداری به نظر، الگویی مطابق شکل ۱۷ ایجاد کند.

شکل ۱۸ الگوهاي مطلوب برای توليد چتبین الگویي را نشان مي‌دهد.
قانونی فراگیر: این دسته از قوانین همانند نوع مشابه خود در الگوریتم سلولی با این تفاوت که از تبیه‌ی قوانین مورد نیاز داده‌ی می‌شود. این قانون صورت $ N \cdot M = \{ N^n, M^n \}$ داده‌ی می‌شود که $ N$ صورت $ N = \{ N^n \}$ و $ M = \{ M^n \}$ زیر پسر می‌شود.

اگر اتوماتای سلولی مرکزی رفتار $ N$ انتخاب کنند و تعداد اتوماتاهای همسایه که رفتار $ N$ انتخاب کردهاند متفاوت باشد، به اتوماتای مرکزی جریمه و در غیر این صورت باشند تقلیل خواهد گرفت.

مثال ادامه به چنین قانون فراگیر شده‌امی می‌شود:

قانون 29: این قانون در مستندات بیان کرده است‌که اگر اتوماتای مرکزی رفتار $ N$ انتخاب کنند و تعداد اتوماتاهای همسایه که رفتار $ N$ انتخاب کرده‌اند بزرگتر یا مساوی 8 و نیم تعطیل باشند، به اتوماتای مرکزی جریمه و در غیر این صورت باشند تقلیل خواهد گرفت.

قانون 9: این قانون را می‌توان چنین بیان کرد: اگر اتوماتای مرکزی رفتار $ N$ انتخاب کنند و تعداد اتوماتاهای همسایه که رفتار $ N$ انتخاب کرده‌اند بزرگتر یا مساوی 8 و نیم تعطیل باشند، به اتوماتای مرکزی جریمه و در غیر این صورت باشند تقلیل خواهد گرفت.

قانون 19: این قانون به یکنواحی مطلوب در ساختارهای کمپیوتری است. به یکنواحی مطلوب در ساختارهای کمپیوتری است.
می‌شود. در حالت $N=1$ نیز تا حدودی این الگو ایجاد می‌شود. این قانون در اutomاتا سلولی آگرو کریولف مطرح در فاکتو مهیکا را ایجاد می‌کند. شکل 23 نسبت به ترتیب بهتر دمده از این آزمایش‌ها را نشان می‌دهد.

قانون آگریک (4): $p=4$ و در صورت استفاده از اutomاتا متفاوت با شروع از حالات اولیه تصادفی با چگالی 0، گوشهای متفاوت با شروع از حالات اولیه تصادفی با چگالی 0 (هم سلول‌های سفید هستند) و در صورت مشارکت آگریک با چگالی $p=1$، در نظر گرفته شده است.

در صورت استفاده از اтомاتا آگریک با چگالی $p=4$، آزمایش‌ها در سایر اтомاتا آزمایش تا نسل 2000 ادامه می‌یابد. این باید به اثبات نشان دهد که این اتوماتا آزمایش‌ها را نشان می‌دهد.

1. احتمال اولیه انتخاب رنگ‌های متحفته آزمایش مساوی $1/5$ در نظر گرفته شده است.

2. آزمایش‌های مانند موفقیته می‌شود که میانگین انتخاب به حدود صفر رسیده باشد. الگوی تولید شده توسط این قانون را نشان می‌دهد. در صورت استفاده از اتوماتا کریولف و با شروع از حالات اولیه تصادفی با چگالی 0، گوشهای ایجاد شده که در آن‌ها اودونماته آزمایش چهاردهم رفته گردیده، که در کار هم می‌تواند، الگوهای حاصل شیب های زبانی به دست آورده و مططلوب در قانون شیب‌های الگوی دارند. در حالت $N=4$ الگوهای مططلوب نمی‌رسیم و اتوماتا دارای تغییر وضعیت می‌دهد.

شکل 22 نتایج حاصل از قانون آگریک.

شکل 23 نتایج حاصل از قانون صلیبی و اتوماتا کریولف.

شکل 24 نتایج حاصل از قانون آگریک.

شکل 25 نتایج حاصل از قانون آگریک.

شکل 26 نتایج حاصل از قانون آگریک.

شکل 27 نتایج حاصل از قانون آگریک.

شکل 28 نتایج حاصل از قانون آگریک.

شکل 29 نتایج حاصل از قانون آگریک.

شکل 30 نتایج حاصل از قانون آگریک.

شکل 31 نتایج حاصل از قانون آگریک.

شکل 32 نتایج حاصل از قانون آگریک.

شکل 33 نتایج حاصل از قانون آگریک.

شکل 34 نتایج حاصل از قانون آگریک.

شکل 35 نتایج حاصل از قانون آگریک.

شکل 36 نتایج حاصل از قانون آگریک.

شکل 37 نتایج حاصل از قانون آگریک.

شکل 38 نتایج حاصل از قانون آگریک.

شکل 39 نتایج حاصل از قانون آگریک.

شکل 40 نتایج حاصل از قانون آگریک.

شکل 41 نتایج حاصل از قانون آگریک.

شکل 42 نتایج حاصل از قانون آگریک.

شکل 43 نتایج حاصل از قانون آگریک.

شکل 44 نتایج حاصل از قانون آگریک.

شکل 45 نتایج حاصل از قانون آگریک.

شکل 46 نتایج حاصل از قانون آگریک.

شکل 47 نتایج حاصل از قانون آگریک.

شکل 48 نتایج حاصل از قانون آگریک.

شکل 49 نتایج حاصل از قانون آگریک.

شکل 50 نتایج حاصل از قانون آگریک.
از آزمایش در مدل‌های شایعه توسط CLA استفاده شده است.[6]
قانون اقلیت (2) 1432-1388-6063: در صورت استفاده از انوماتای کلروف و با شروع از حالت اولیه تصادفی با چگالی اولیه i = 0.5، انگرهای بصورت دسته خظف موازی (عمودی یا افقی) ایجاد می‌شود. انگرهای حاصل گاهی می‌شینه به انگری زمینه مطلوب در قانون خظف افقی، و گاهی شیب‌های انگری در قانون خظف عمودی، گاهی نیز شکستگی‌هایی به صورت چپ‌دامای قسمتی از به‌پارامتر LRF پ، و محیط با ابعاد زوج استفاده کنید نیز به این ساختارها a = 0.96
می‌رسیم. در صورتی که از انوماتای ۲ استفاده کنید، به‌سوی انگریکاری مارکوفی می‌رسیم که با افزایش پارامتر t شتاب‌های انگری‌ای ایجاد شده به انگری زمینه نظر نشود که عدم انگری مدرن را توانایی برروی a افزایش می‌دهد. این امر را می‌توان چنین توجه کرد که زمانی که پارامتر t افزایش می‌یابد، سرعت همگرایی انوماتای بیشتر شده و این‌حاصل رفتارها سریع‌تر به مقدار ۱ نزدیک می‌شود. در تجربه فرصت‌گیری برای پایان انگری مطلوب وجود وجود داشته.

در شکل ۲۵ برخی از تجربیات حاصل از آزمایش‌ها با قانون اقلیت و انوماتای کلروف آن‌ها هشته است. از تجربیات پیش‌آمدها برای کاربرد در پردازش تصاویر استفاده شده است.[8]
قانون اقلیت بالا (2) 1432-1388-6063: در صورت استفاده از انوماتای کلروف و با شروع از حالت اولیه تصادفی با چگالی اولیه i = 0.5، انگرهای بصورت دسته خظف موازی (عمودی یا افقی) با چند دسته خظف موازی عمود بر هم ایجاد می‌کنند. به‌طوری که در قانون خظف افقی، حداقل دو دسته خظف موازی و عمود بر هم ایجاد می‌شوند.
قانون همگن، جا اکندنه شیبکه چهارخانه، خطوط افقی و خطوط عمودی: شکل‌های ۲۸ تا ۳۰، الگوهای تولید شده توسط این قانون را نشان می‌دهند. در صورت استفاده از الگوهای با صفت‌های L_{RI} به ساختمان مورد نظر N می‌پردازیم. با افزایش پارامتر a، کم شدن عمق حافظه در اتوماتاهای با ساختمان باعث شیب‌سازی ساختارهای انجام شده با مدل ور کمتر می‌شود. بنابراین می‌توانند که L_{RP} را از نظر تغییرات می‌پذیرند. در این شرایط، a می‌تواند به عنوان یک نرخ بیشتر همگردایی اتوماتاهایی که به ترتیب L_{RP} و L_{RI} قرار داشته و در هر صورت استفاده از اتوماتاهای a است. البته در صورت استفاده از اتوماتاهای a، می‌تواند به آن‌ها یک نرخ بیشتر همگردایی اتوماتاهایی که به ترتیب L_{RP} و L_{RI} قرار داشته و در هر صورت استفاده از اتوماتاهای a است. البته در صورت استفاده از اتوماتاهای a، می‌تواند به آن‌ها یک نرخ بیشتر همگردایی اتوماتاهایی که به ترتیب L_{RP} و L_{RI} قرار داشته و در هر صورت استفاده از اتوماتاهای a است.
نمونه‌ای را داده‌ایم. در اتوماتای L_0 هر چه مقدار پارامتر a کوچک‌تر
باشد ساختارهای به دست آمده به ساختار مطلوب شباهت بیشتری
پیدا می‌کنیم ولی تعداد نسل‌های مورد نظر باید رشد نماید. به این‌نها
بهتر می‌شود در مرز دو تا نه که با هم تقلید ندارند. همین‌طور
تغییر در وضعیت اتوماتا می‌تواند به دست آن‌ها همیشه به چیزی از
گره‌ها عقب نشینی کند.

در مورد قوانین فراغت، چنانچه اتوماتای با ساختار شیب
(به‌غیر از اتوماتای کرلوی) استفاده کنیم، به ساختارهای متقارن و
زیبایی می‌رسد. در دیگر قوانین، نظر از قوانین اقیانوسی چنانچه از
ابتدا اتوماتای کرلوی استفاده کنیم، به بعضی از ساختارهای مطابق در
قانون عمومی می‌رسید.

جون در صورت استفاده از اتوماتای با ساختار تابی
(به‌غیر از اتوماتای کرلوی) و با یک حالت در مسیر 1، اتوماتای
سالوی رفتار اتوماتای سالوی را از خود نشان می‌دهد و نیز جون در
این حالت سطحی از اثری دارد. به موانع G نتیجه گرفت که اتوماتای
بادگیرنده سالوی در برگیرنده اتوماتای سالوی است و ترتیب دارای
ویژگی‌های محبوبی است.

کاربرد CLA در مدل‌سازی انتشار شیب‌های
پدیده انتشار در سیستم‌های اجتماعی نظر انتشار شیب‌های، اخبار و
پای ایداع‌ها در سه دهه گذشته توسط انتشار علائم اجتماعی
جرافی دانان اقتصادیان و نیز مدیران سود بررسی قرار گرفته
است. ما در اینجا از اصطلاح عمومی انتشار شیب‌های برای یکی از
مودال‌ها استفاده می‌کنیم.

انتشار شیب‌های معبرالاً به عوامل فراپی شیب‌های تعریف می‌شود که در آن
شیب‌های از طریق کال‌هایی در طول زمان به عنوان یک سیستم
اجتماعی می‌باشند. برای دیگر کال‌های از موارد این کال‌های ارتباطی بر
کمی دارد. به عوامل مثل، ما در توصیف کرده‌ایم. نتیجه آن یک
دیدنی‌کر چشمان و می‌تواند از افراط غربی‌هایه به که در
شهرهای دور دست زنگ‌زدگی می‌کند. کنترل اثر این دیدگاه
این ویژگی محلی بودند و تأثیر مناسبی بر انتقال اتوماتای
سالوی اجتماعی و نیز اتوماتای بادگیر سالوی را به عوامل مدل‌های
مناسبی مطرح می‌سازد. در ساده‌ترین شکل‌های سالوی با یک عضو
جامعه اشغال شده شده است اعضای جامعه یکی از در حالی ممکن. بنی
موافقها با مخالفان، را به موانع انتخاب کنند. حالات موانع را با 1 و
حالات منافع را با - 2 نشان می‌دهیم. در ادامه مدل‌های پیشنهادی
توسط یک طرف با مدل‌سازی انتشار شیب‌های بالا استفاده از اتوماتای
سالوی و اتوماتای سالوی اجتماعی با یکی از سیستم‌های 171 و سیستم

شیرف شماره یازدهم و هفتم / 45
طرح این مدل یک‌زیر انتشار شاخص و نیز تعیین مقدار
فرآیند مالک که در زمان ترکاردار بی‌باینت، به
ساعت $s(i,t)$، می‌تواند در زمان t موفقیت کند. در این مدل، مانند مدل
قبلی، زمانی که یک فرد موفقیت شاده شود را هیمت موفقیت بی‌باینت
خواهد نامید. این مدل را می‌توان یک اتمانت سلسولی احتمالی با
توجه احتمال زیر در نظر گرفت:

\[
p(s(i,t+1) = s(i,t)) = 1 - \delta(i,t)
\]

\[
p(s(i,t+1) = 1) = 1 - \delta(i,t)
\]

احتمال انتقال وضعیت به صورت زیر تعیین می‌شود:

\[P_{b\rightarrow a} = P(s(i,t+1) = b | s(i,t) = a)\]

و با توجه احتمال تغییر وضعیت یک سلسول از
زمان‌است. در این مدل، مانند مدل قبلی، احتمال به صورت زیر است:

\[
P = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0
\end{bmatrix}
\]

به‌عنوان اولین تقریب، تنها $\delta(i,t)$ چنین تعیین می‌شود:

\[
\delta(i,t) = \frac{1}{\lambda R} \left(\sum_{n=-R}^{0} s(i,n,t) + \sum_{n=1}^{R} s(i,n,t) \right)
\]

در این صورت چگالی محلی $\rho(t)$ در زمان t به
همان‌هم‌سازی‌های دقیق‌تر نسبت به انتخاب
$\lambda(t)$ یک تعداد بسیار کم از سیستم‌های اجتماعی واقعی را در بر
می‌گیرد. تعادل $\rho(t)$ منجر به $\rho(t) = \rho(t)$ نشان می‌دهیم، از فرمول
توزیع به‌کار می‌آید:

\[M(t+1) = M(t) + \rho(t)
\]

چگالی صفرها در زمان t در این روش از توابع $\theta(t) = \sum_{\lambda=1}^{\infty} M(t, \lambda)$ حاصل می‌شود:

\[\rho(t) = 1 - \theta(t) = 1 - (1 - \rho(t)) \left(1 - \rho(t) \right)\]

همان‌هم‌سازی‌ها را با وزن کلیک در نظر گرفته‌ایم که ممکن است
واقعی‌تر باشد. اما به‌عنوان یک تقریب اولیه می‌تواند این هم‌هم‌سازی‌ها را با
غیر از یک هم‌هم‌سازی $\rho(t)$ در نظر گرفت، در این اجلاس که از
$\sum_{n=-R}^{0} s(i,n,t) + \sum_{n=1}^{R} s(i,n,t)$ تعادل $\rho(t)$ نشان می‌دهیم، از فرمول
توجه احتمال زیر به‌طوری که:

\[\lim_{t \to \infty} \rho(t) = 1\]

اگر با چگالی اولیه کوچک، $\rho(0)$ از افراد موجود به طور تصادفی
برداشته شوند، آگاه شکل S از حکومت و نهایتاً به دستگاه R تعیین شده، عناصر جنایت به

\[\delta(i,t) = \sum_{n=-\infty}^{\infty} s(i+n,t) p(n)\]
آدفای نوغ تمیل: در صورتی که افلاخم اجتماع از این نوع باشد، محققان این افلاخم را به شیوع لغزش، محققانی که با آن عفونت می‌باشند، همچنین با آن برخی از افلاخم حاضر شوند. یکی از ویژگی‌های این تکرار این است که یکی از عوامل‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.

آدفای نوغ تمیل: یکی از ویژگی‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.

آدفای نوغ تمیل: یکی از ویژگی‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.

آدفای نوغ تمیل: یکی از ویژگی‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.

آدفای نوغ تمیل: یکی از ویژگی‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.

آدفای نوغ تمیل: یکی از ویژگی‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.

آدفای نوغ تمیل: یکی از ویژگی‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.

آدفای نوغ تمیل: یکی از ویژگی‌های این افلاخم می‌باشد. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود. افزایش در افلاخم اجتماع را می‌تواند باعث افزایش در افلاخم اجتماع شود.
افراد نوع L_{RF} این گونه افراد معمولاً آینده نسبت به یک شایعه نظر قرار دارند. با حرکت شیبیدن شایعه اعتقادنی نسبت به آن دیگر
شدند و به عکس با حرکت شیبیدن خبر تقصی شایعه. اعتقادنی نسبت به آن کمتر می‌شود. چنان افرادی که تزمانی که به شایعه اعتقاد کامل بی‌پدایی
نکردند، با کمال‌الحال با آن مخالف نشسته‌اند، گاهی اوقات در جامعه با آن
مؤلفت و گاهی اوقات نتیج مخالفت می‌کنند. البته میزان موافقت و یا
مؤلفت بستگی به میزان اعتقادنی دارد. هرچه میزان اعتقادنی
بیشتر باشد، بهتر موافقت با آن موافقت می‌کنند و بر عكس
افراد نوع L_{RI} این گونه افراد نسبت به نظر مخالف از اعتیاد‌های و
عیب‌های مخالف تأثیر زیادی بر غربیه آنها ندارد. مانند نوع L_{RF}، این
شیبیدن نیز با شیبیدن شایعه اعتقادنی نسبت به آن دیگر شایعه
نکردند. این افراد نوع L_{RI} همچنین با کمال‌الحال آن مخالفت
نشدند. یکی از آنها با اعتقادنی دارد. هرچه میزان اعتقادنی
بیشتر باشد، بهتر موافقت با آن موافقت می‌کنند و
گاهی اوقات نتیج مخالفت می‌کنند.

افراد نوع L_{RF} این گونه افراد نظر موافق و یا خالی بهتر از نظر مخالف
قبول می‌کنند. به طوری که نظر مخالف نسبت به نظر موافق تأثیر بسیار
کمتری بر غربیه آنها دارد. مانند افراد نوع L_{RI}، این افراد نوع
نشسته به این دو نظر می‌شود و تا زمانی که به
شایعه اعتقادنی کامل بی‌پدایی نکردند با کمال‌الحال تا
مشتاق نشسته، یکی از آنها با نظر موافقت و یا
گاهی اوقات نتیج مخالفت می‌کنند.

مورد ذکر شده فوق قرار مثالی از اعتیاد از برخی افراد
جامعه که یاکی از اتفاقاتی که یادگیری گزارش شده عیب می‌شود و
می‌توان یا در نظر گرفت روان‌شناسی افراز. اتفاقاتی با یادگیری
وقایتی محیط جدیدی تعیین کرده و آنها در عیب مسلمان استفاده
می‌کنند.

پرای شیب سازی‌ها از قانون مجزی
و All Or. آن یا آن اشاره
شده است. استفاده می‌کنیم. در این حالت، هر فرد در جامعه زمینی که
شایعه را از حداقل یکی از افراد و اغلب در همسایگی خود یافته بود، با
توجه به پاسخ یا بر اثری خود اعتقادنی به آن شیبیدر در غیر
یا صحبت می‌کرد. نمودار تعداد افراد موافق 1.8
شکل خود به
و هرچه پاسخ‌های یا بر اثری خود اعتقادنی به
شیب منحنی افراد موافق بیشتر شده است. در این آزمایش‌ها چگالی
ولی $\left(\mu \right)$ در نظر گرفته شده است. در این آزمایش‌ها با ساختار
600 تمایل مخالفت، و در نظر گرفته شده است. شکل‌های 7 و
28 نمودارهای چگالی موافق معنی‌دار برای مجموعه‌های مشابه از افراد
کرید و کرید کمی یا دیده.

شکل 28. نمودارهای چگالی موافق معنی‌دار برای مجموعه‌های مشابه از افراد کرید و کرید کمی یا دیده.
پخش شایعه در بین جمعیت‌های مختلف
افراد نوع تستمنی، کریلاوک، گروه و پونومارف: پخش شایعه در بین افراد نوع تستمنی، کریلاوک، گروه و پونومارف در صورت مساوی بودن پارامتر ارتقایی آنها یکسان است. در صورت مساوی بودن پارامتر ارتقایی، افراد نوع پونومارف از همه زودتر و افراد نوع کریلاوک از همه دیرتر شایعه را قبول می‌کنند. شکل 64 جمعیت شایعه افراد نوع تستمنی، کریلاوک و پونومارف را نشان می‌دهد. همانطور که مشاهده می‌شود، در حالی که تقریباً تمام افراد نوع پونومارف شایعه را قبل کرده‌اند، هنوز شایعه در بین افراد نوع کریلاوک به‌طور کامل پخش نشده است.

تأثیر شعاع همسایگی: همان‌گونه که قبل بررسی شد، افزایش شعاع همسایگی تأثیر مستقیم بر افزایش سرعت پخش شایعه در افراد دارد. در شکل 61 نمودارهای چگالی افراد موافق با تغییر شعاع همسایگی.
همانگی R تشتان داده شده است. در این آزمایش‌ها یا پیمایش ۵ پرست. افراد جامعه نیاز از آزمایش‌های معمول با پرستاران اردیبهشتی انتخاب (حضور مراجعه) هستند.

نتیجه‌گیری: برای بررسی پیش‌بینی شایعه در یک جمعیت، می‌توان از احتمال انتقام که بکنند ۳۹ الف برتون بطور هورپ یک تقریب افراز جامعه را در نظر بگیرد. افزایش در پیشرفت یک تقریب ده به روش آن معمولاً با در نظر گرفتن شایعه برای ما بیشتر عینیت یک دنیا می‌گردد. یک کاربرد عمده از این فرد را می‌توان به بهره‌برداری از این امکانات داده شود. یا در مدل امکانات با روش، سلولی مدل مناسب‌تری نسبت به سه‌گانه امکانات سلولی و امکانات احتمال است. چرا که روند م جزئی به نمایش گذاشته شده است.

کاربرد امکانات با روش در پردازش تصاویر عملیات مطلوب سلولی (CLO)‌های صورتی بر روی آرایه‌های از طلا و از آرایه‌های صورتی P(I, J) می‌گردد. افزایش در آرایه‌های صورتی مقدار آن در آرایه‌ای قابل پیش‌بینی و به‌طور مشابه قابل تنبیه را نشان می‌دهد. CLO یا را می‌توان بر اساس نوع نیاز به‌طور چهار به سه‌گانه CLO رشته‌بندی کرد.

I دنیای‌هایی که فقط بی‌کاری اعمال می‌شوند.

II این عملیات را تغییر نمی‌دهد (CLO که را تغییر نمی‌دهد).

III به‌طور مشابه چنین دنیایی از این عملیات است که با انتظار نمی‌رود. CLO یا را تغییر نمی‌دهد.

CLO یا را تغییر نمی‌دهد. CLO یا را تغییر نمی‌دهد.

تشکیل‌دهنده نابرابری از این عملیات مستقل قرار داده، تمام عملیات وابسته به داده‌های ۳۹ پرست. افراد جامعه نیاز از آزمایش‌های معمول با پرستاران اردیبهشتی انتخاب (حضور مراجعه) هستند.

نتیجه‌گیری: برای بررسی پیش‌بینی شایعه در یک جمعیت، می‌توان از احتمال انتقام که بکنند ۳۹ الف برتون بطور هورپ یک تقریب افراز جامعه را در نظر بگیرد. افزایش در پیشرفت یک تقریب ده به روش آن معمولاً با در نظر گرفتن شایعه برای ما بیشتر عینیت یک دنیا می‌گردد. یک کاربرد عمده از این فرد را می‌توان به بهره‌برداری از این امکانات داده شود. یا در مدل امکانات با روش، سلولی مدل مناسب‌تری نسبت به سه‌گانه امکانات سلولی و امکانات احتمال است. چرا که روند م جزئی به نمایش گذاشته شده است.

کاربرد امکانات با روش در پردازش تصاویر عملیات مطلوب سلولی (CLO)‌های صورتی بر روی آرایه‌های از طلا و از آرایه‌های صورتی P(I, J) می‌گردد. افزایش در آرایه‌های صورتی مقدار آن در آرایه‌ای قابل پیش‌بینی و به‌طور مشابه قابل تنبیه را نشان می‌دهد. CLO یا را می‌توان بر اساس نوع نیاز به‌طور چهار به سه‌گانه CLO رشته‌بندی کرد.

I دنیای‌هایی که فقط بی‌کاری اعمال می‌شوند.

II این عملیات را تغییر نمی‌دهد (CLO که را تغییر نمی‌دهد).

III به‌طور مشابه چنین دنیایی از این عملیات است که با انتظار نمی‌رود. CLO یا را تغییر نمی‌دهد. CLO یا را تغییر نمی‌دهد. CLO یا را تغییر نمی‌دهد. CLO یا را تغییر نمی‌دهد.
د) گروه چهارم قوانینی هستند که تصور را منقضی کنند:

۶۷۸۹-۱۳۸۵
۶۷۸۹-۱۳۸۵۰۶۷
۶۷۸۹-۱۳۸۵۰۶۸
۶۷۸۹-۱۳۸۵۰۶۹
۶۷۸۹-۱۳۸۵۰۷۰
۶۷۸۹-۱۳۸۵۰۷۱
۶۷۸۹-۱۳۸۵۰۷۲

ب) گروه نهم شامل قانون ۹۵-است که در صورت استفاده از این قانون با انتخابات کریلوف ساختاری شیوه به اسکلت به دست می‌آید.

نتایج حاصل از آزمایشات پردازش تصوری: در اکثر آزمایشات انجام شده تصوری اول ملاحظه شکل ۴۴-است. در وقایع گروه نهم نشان داده شد که می‌تواند موفقیت به ثمر آورد.

(الف) در قواین گروه ۱. به تصور در یک مرحله به‌دست می‌آید.
(ب) در مجموعه قواین گروه دوم، هر چه به سمت یکی که حاصل کنیم، داخل منحنی‌ها زیادتر منظم شود و هر چه به‌سوی مایل حاصل کنیم، تصور به‌صورت یک‌واخت منظم می‌شود (با حفظ خصوصیات ظاهری آن).
(ت) در مجموعه قواین گروه سوم، تصویر هموار می‌شود.

قوانین استفاده شده برای پردازش تصوری: به‌طور کلی قوانین استفاده شده در آزمایشات بر روی تصور آمپا می‌توان به پنج گروه زیر تقسیم کرد:

(الف) این قوانین شامل قانون ۱- است که برای برابری انتخابه استفاده می‌شود.

(ب) این قوانین شامل قانون ۹۵- است که برای آرامش انتخابه استفاده می‌شود.

۱۲۳۴۵۶۷۸۹-۱۳۸۵
۱۲۳۴۵۶۷۸۹-۱۳۸۵
۱۲۳۴۵۶۷۸۹-۱۳۸۵
۱۲۳۴۵۶۷۸۹-۱۳۸۵
۱۲۳۴۵۶۷۸۹-۱۳۸۵
۱۲۳۴۵۶۷۸۹-۱۳۸۵

شکل ۴۴-تصویر اولیه برای آزمایشات انجام شده.
در ادامه به بررسی آزمایش‌های انجام گرفته توسط اسکانوای بازکری بر روی سطوح می‌پردازیم. برای آزمایش‌های که با انجام تکرار در صورت استفاده از انواع مختلف با ساختار متغیر احتمال اولیه و فاکتورها برای نقاط میثاق سیباه ۱۹۹۹ و ۲۰۰۱ و ۲۰۰۳ است. برای نقاط مستقیم و ۲۰۰۱ و ۲۰۰۳ است.

برای آزمایش‌های انواع گرفته نشان داده است که انواع با بردارهای CLA پردازش تصویر مناسب حسیب و عملکرد بالا سطوح و انواع سطوح ایده‌آل دارند و از این رو همگرا می‌شود. در صورت موارد سیستم‌های تصویر نهایی همگرا می‌شود. نتایج حاصل از این آزمایش‌ها در شکل ۲۳ آمده است.

برای فاکتور تغییر در سطوح می‌پردازیم. برای آزمایش‌های که با انجام تکرار در صورت استفاده از انواع مختلف با ساختار متغیر احتمال اولیه و فاکتورها برای نقاط میثاق سیباه ۱۹۹۹ و ۲۰۰۱ و ۲۰۰۳ است. برای نقاط مستقیم و ۲۰۰۱ و ۲۰۰۳ است.

ناگفته نشود در تعریح حاصل از آزمایش‌های که برای CLA پردازش تصویر مناسب حسیب و عملکرد بالا سطوح و انواع سطوح ایده‌آل دارند و از این رو همگرا می‌شود. در صورت موارد سیستم‌های تصویر نهایی همگرا می‌شود. نتایج حاصل از آزمایش‌های برای نمونه‌های و ۲۰۰۱ و ۲۰۰۳ است. برای نقاط مستقیم و ۲۰۰۱ و ۲۰۰۳ است.
شکل ۲۵ تصادف حاصل از آزمایشات انجام شده با قانون اکتریت.

نکاتی نیز از آزمایشات بالاتر آمده است که عامل اصلی حاصل سه‌بر دانسته انجام داده شده است. به‌طور کلی نتایج انجام شده با قانون اکتریت برای حاصل سه‌بر دانسته است.

شکل ۴۴ تصادف حاصل از آزمایشات انجام شده با قانون اکتریت.

مطابق شکل ۲۵ تمام آزمایشات یا حذف به‌هایا تیز را با استفاده از قانون اکتریت (گروه قوانین) دانسته، در تمام موارد استفاده شده است. همچنین از قانون اکتریت برای حذف اغتشاش وری در تصاویر استفاده شده است. در شکل ۴۴ تصادف حاصل از حذف اغتشاش ۱۵۰% ارائه شده است.
شکل ۱۵ تصاویر حاصل از آزمایشات انجام شده با قانون ۱۲۶۹۹–۱۲۷۱۵ و اتزاماتی کریلوف.
نتیجه‌گیری
در این نوشتار مدل جدیدی تحت عنوان اتوماتیک پاژکسرالولی معرفی شده و نتایج آن از طریق شبیه‌سازی رایانه‌ای و مورد مطالعه قرار گرفته‌اند. همچنین دو کاربرد این مدل در زمینه انتشار سابقه و پردازش تصاویر ارائه شده است. نشان داده شده است که چگونه عملیات مختلف در پردازش تصویر نظیر عملیات اسکالر، هموارسازی، انقباض، اندازه‌گیری و هدف‌گیری از آن‌ها به بهبود کیفیت و کاربرد این اتوماتیک پاژکسرالولی انجام گرفته‌اند.

نتایج ارائه شده این آزمایش با توجه به مدل sla با کاربردهای مختلف به بهبود کیفیت و کاربرد این اتوماتیک پاژکسرالولی دیده شده است. هدف از این نوشتار معرفی مدل اتوماتیک پاژکسرالولی بوده است. کاربردهای ذکر شده بیشتر در جهت تهیه مدل و همچنین نابل‌ استفاده‌بودن مدل غیر‌نظامی با این وجود، مطالعات گسترده‌تری درباره کاربرد اتوماتیک پاژکسرالولی در پردازش تصویر در حال انجام است.

شکل ۵۰: نمایش همگرایی آزمایش انجام شده با اتوماتیک پاژکسرالولی و قانون ۲۵.

شده است که برای بررسی از طولانی شدن به آن‌ها اشاره نیم‌شود.

۱۷۷,۱۷۸,۱۷۹,۱۸۰
1. Cellular learning Automata (CLA)
2. Learning Automata (LA)
3. disjunctive normal from
4. chaotic
5. unfavorable hence
6. stationary environment
7. non-stationary environment
8. learning automata with fixed structure
9. action
10. learning automata with variable structure
11. local density
12. global density
13. cellular logic operation
14. data independent
15. data dependent
16. thresholding
17. edge detection
18. irregularities