حل معادلات سبیع‌ئی اولیر برای جریان مافوق صوت با استفاده از روش‌های صریح و ضمینه رząd

محمودی علیمهدی (استاد)
همایون اماده (استادان)
امید ابوعلی (استادان)
دانشکده مهندسی مکانیک، دانشگاه تهران

در این مقاله، حل معادلات سبیع‌ئی اویر برای روش‌های صریح و ضمینه با شیوه‌های مورد بررسی قرار گرفته است. برای جریان‌های سبیع‌ئی اولیر، با استفاده از روش‌های صریح و ضمینه، معادلات سبیع‌ئی اویر حل شده است. در این روش‌ها، معادلات سبیع‌ئی اویر به شکل معادلات ریاضی حل می‌شوند. در این مقاله، حل معادلات سبیع‌ئی اویر برای جریان‌های سبیع‌ئی اولیر با استفاده از روش‌های صریح و ضمینه ارائه شده است.

مقدمه

یکی از ابزارهای لازم برای طراحی اجسام پرندی مافوق صوت یک کد عددی مناسب برای تعیین خصوصیات جریان هوا در اطراف جسم است. معادلات ناوری-استوکس به‌سیاری از پدیده‌های جریان سیال، حاکم است. حل عددی این معادلات برای جریان‌های تراکم‌پذیر بر روی اجسام پرندی، به‌سیاری اطمینان است و همچنین نیاز به رایانه‌های بالاتر دارد. به‌عنوان دو مثال از این رایانه‌ها، برای مثال، اجرای معادلات در هرم‌های پرندی که با متغیرهای مفید از امکان‌پذیر است، می‌توان اطلاعات نیاز برای مرحله اولیه طراحی را به دست آورد. برای جریان‌های اولر که اثرات لزج حسین محدود به ناحیه کوچکی در اطراف جسم می‌شود، جواب معادلات ناوری-استوکس به‌سیاری اطمینان است. به‌عنوان یکی از شرایط بهترین جریان تطبیق محاسبه شده است. نکته مهم در این مقاله این است که معادلات ناوری-استوکس نیز به‌سیاری استفاده در روش‌های سبیع‌ئی اویر معرفی شده است.

کلمات کلیدی: روش‌های صریح، ضمینه، معادلات سبیع‌ئی اویر، جریان مافوق صوت.
حل معادلات سه بعدی اویلر برای حریان ماکوئر صوت با...

شکل ۱. سلول حجم محدود.

\[E = \frac{k_t}{J} F + \frac{k_y}{J} G \]

\[F = \frac{n_x}{J} E + \frac{n_y}{J} G \]

\[G = \frac{k_v}{J} E + \frac{k_v}{J} F \]

معادله ۳ را می‌توان به صورت مجزاکننده شده نوشت:

\[[Q_{j,k,l}] = [E_{j+k,l} - E_{j-k,l}] \]

\[[F_{j,k,l} + F_{b,k,l}] + [G_{j,k,l} + G_{b,k,l}] = 0 \]

که در آن \(G, F, E \) شارهای عددي در روي سطوح حجم کنترل‌اند.

(شکل۱)

با در نظرگرفتن ملاحظات زيس، معادله ۵ را می‌توان شکل جداسازی شده حجم محدود معادلات اویلر دانست. با فرض:

\[Q_{j,k,l} = Q V_{j,k,l} \]

که در آن حجم \(V \) مجموعه و

\[\left[\frac{k_t}{J}, \frac{k_y}{J}, J \right]_{j+k,l} + \left[\frac{n_x}{J}, \frac{n_y}{J}, J \right]_{j-k,l} + \left[\frac{k_v}{J}, \frac{k_v}{J}, J \right]_{j,l} \]

سهمه‌های بردار عمود بر سطوح حجم کنترل است. از شرح نحوی معادسه حجم اتم‌های سطح اتم، برای خلاصه‌نويسي صرف نظر می‌شود. اما جزئيات کامل آن در دسترس است.\(^{11}\)

\[\dot{\mathbf{Q}} = \mathbf{F} + \mathbf{G} \]

در معادلات بالا \(\mathbf{F} \) و \(\mathbf{G} \) نشان می‌دهند. معادله ۱ را می‌توان به مختصات سمت‌های شريحة داشت:

\[\dot{\mathbf{Q}} = \mathbf{F} + \mathbf{G} \]

\[\dot{\mathbf{Q}} = \mathbf{F} \]

شریف‌دماوند و زمینه
جدول ۱. بردارهای ویژه چپ و راست ماتریس زاکویی.

\[
I^1 = \left\{ \frac{\gamma \cdot \gamma^1}{c}, \frac{\gamma \cdot \gamma^1 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^1 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^1 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^1 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^2 = \left\{ \frac{\gamma \cdot \gamma^2}{c}, \frac{\gamma \cdot \gamma^2 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^2 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^2 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^2 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^3 = \left\{ \frac{\gamma \cdot \gamma^3}{c}, \frac{\gamma \cdot \gamma^3 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^3 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^3 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^3 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^4 = \left\{ \frac{\gamma \cdot \gamma^4}{c}, \frac{\gamma \cdot \gamma^4 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^4 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^4 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^4 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^5 = \left\{ \frac{\gamma \cdot \gamma^5}{c}, \frac{\gamma \cdot \gamma^5 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^5 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^5 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^5 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^6 = \left\{ \frac{\gamma \cdot \gamma^6}{c}, \frac{\gamma \cdot \gamma^6 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^6 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^6 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^6 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^7 = \left\{ \frac{\gamma \cdot \gamma^7}{c}, \frac{\gamma \cdot \gamma^7 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^7 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^7 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^7 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^8 = \left\{ \frac{\gamma \cdot \gamma^8}{c}, \frac{\gamma \cdot \gamma^8 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^8 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^8 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^8 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^9 = \left\{ \frac{\gamma \cdot \gamma^9}{c}, \frac{\gamma \cdot \gamma^9 \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^9 u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^9 v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^9 w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
I^{10} = \left\{ \frac{\gamma \cdot \gamma^{10}}{c}, \frac{\gamma \cdot \gamma^{10} \cdot \theta + n_x u + n_y v + n_z w}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^{10} u - n_x}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^{10} v - n_y}{\sqrt{\gamma}}, \frac{\gamma \cdot \gamma^{10} w - n_z}{\sqrt{\gamma}} \right\}
\]

\[
\rho_{m+1} = \rho_{m+1} \frac{\rho_{m+1}}{\rho_{m+1}}
\]

\[
(u,v,w)_{m+1} = \left(u_{m+1} v_{m+1} w_{m+1} \right)_{m+1} \frac{u_{m+1}}{\sqrt{u_{m+1}}} + \left(u_{m+1} v_{m+1} w_{m+1} \right)_{m+1} \frac{v_{m+1}}{\sqrt{v_{m+1}}} + \left(u_{m+1} v_{m+1} w_{m+1} \right)_{m+1} \frac{w_{m+1}}{\sqrt{w_{m+1}}}
\]

\[
h_{m+1} = h_{m+1} \frac{h_{m+1}}{h_{m+1}}
\]

\[
\theta = \frac{u_{m+1} v_{m+1} w_{m+1}}{\gamma} + \frac{n_{x,y,z}}{\gamma} = \frac{n_{x,y,z}}{\gamma} \frac{1}{n_{x,y,z} + n_{y,z} + n_{z,x}}
\]

\[
\frac{\alpha}{\beta} = \frac{\alpha}{\beta} \frac{\alpha}{\beta} + \frac{\alpha}{\beta} \frac{\alpha}{\beta} + \frac{\alpha}{\beta} \frac{\alpha}{\beta}
\]

\[
\sum_{i=1,2,3} \frac{\delta}{\epsilon} = \frac{\delta}{\epsilon} \frac{\delta}{\epsilon} + \frac{\delta}{\epsilon} \frac{\delta}{\epsilon} + \frac{\delta}{\epsilon} \frac{\delta}{\epsilon}
\]

\[
\gamma = \gamma \frac{\gamma}{\gamma} + \gamma \frac{\gamma}{\gamma} + \gamma \frac{\gamma}{\gamma}
\]

\[
\frac{\lambda}{\mu} = \frac{\lambda}{\mu} \frac{\lambda}{\mu} + \frac{\lambda}{\mu} \frac{\lambda}{\mu} + \frac{\lambda}{\mu} \frac{\lambda}{\mu}
\]

\[
\frac{\nu}{\omega} = \frac{\nu}{\omega} \frac{\nu}{\omega} + \frac{\nu}{\omega} \frac{\nu}{\omega} + \frac{\nu}{\omega} \frac{\nu}{\omega}
\]

\[
\frac{\psi}{\chi} = \frac{\psi}{\chi} \frac{\psi}{\chi} + \frac{\psi}{\chi} \frac{\psi}{\chi} + \frac{\psi}{\chi} \frac{\psi}{\chi}
\]

\[
\frac{\rho}{\sigma} = \frac{\rho}{\sigma} \frac{\rho}{\sigma} + \frac{\rho}{\sigma} \frac{\rho}{\sigma} + \frac{\rho}{\sigma} \frac{\rho}{\sigma}
\]

\[
\frac{\theta}{\vartheta} = \frac{\theta}{\vartheta} \frac{\theta}{\vartheta} + \frac{\theta}{\vartheta} \frac{\theta}{\vartheta} + \frac{\theta}{\vartheta} \frac{\theta}{\vartheta}
\]

\[
\frac{\phi}{\psi} = \frac{\phi}{\psi} \frac{\phi}{\psi} + \frac{\phi}{\psi} \frac{\phi}{\psi} + \frac{\phi}{\psi} \frac{\phi}{\psi}
\]

\[
\frac{\chi}{\mu} = \frac{\chi}{\mu} \frac{\chi}{\mu} + \frac{\chi}{\mu} \frac{\chi}{\mu} + \frac{\chi}{\mu} \frac{\chi}{\mu}
\]

\[
\frac{\vartheta}{\psi} = \frac{\vartheta}{\psi} \frac{\vartheta}{\psi} + \frac{\vartheta}{\psi} \frac{\vartheta}{\psi} + \frac{\vartheta}{\psi} \frac{\vartheta}{\psi}
\]
روش حل صریح

در روش صریح شارا در زمان فصلی محاسبه می‌شوند و متغیرهای در زمان $t_{n+1}+\Delta t$ به راحتی از رابطه زیر محاسبه می‌شود.

$Q_{n+1}=Q_n -
\frac{\Delta}{Vol} \left[E_{\frac{j+\frac{1}{2}}{t+\frac{1}{2}}} - E_{\frac{j-\frac{1}{2}}{t-\frac{1}{2}}} + F_{\frac{j+\frac{1}{2}}{k+\frac{1}{2}}} - F_{\frac{j-\frac{1}{2}}{k-\frac{1}{2}}} + G_{\frac{l+\frac{1}{2}}{l-\frac{1}{2}}} - G_{\frac{l-\frac{1}{2}}{l-\frac{1}{2}}} \right]$

مزیت این روش صریح آن و عیب این روش لزوم کوچک بودن گام زمانی در پایداری حل است.

روش حل ضمنی

در این روش صورت بقایی معادلات اولر، به شکل زیر جداسازی می‌شود:

$Q_{n+1}=Q_n -
\frac{\Delta}{\Delta x} \left[E_{\frac{j+\frac{1}{2}}{t+\frac{1}{2}}} - E_{\frac{j-\frac{1}{2}}{t-\frac{1}{2}}} + F_{\frac{j+\frac{1}{2}}{k+\frac{1}{2}}} - F_{\frac{j-\frac{1}{2}}{k-\frac{1}{2}}} + G_{\frac{l+\frac{1}{2}}{l+\frac{1}{2}}} - G_{\frac{l-\frac{1}{2}}{l-\frac{1}{2}}} \right] + \left[F_{\frac{k+\frac{1}{2}}{l+\frac{1}{2}}} - F_{\frac{k-\frac{1}{2}}{l-\frac{1}{2}}} + G_{\frac{l+\frac{1}{2}}{l+\frac{1}{2}}} - G_{\frac{l-\frac{1}{2}}{l-\frac{1}{2}}} \right]^{n+1}
$

برای حل کردن معادلات غیر خطی فوق، از بسط چپ به روابط فوق نسبت به استفاده می‌کنیم. برای مثال:

$\Delta E_{n+1}=\Delta E_n + \frac{\Delta E_{n+1}}{\Delta q} \Delta q$

که در آن $\Delta E_{n+1}=q^n - \Delta q$ با توجه به $\Delta q=q^{n+1}-q^n$ و $Q_{n+1}=VxQ$ و با جایگذاری کردن آن در معادله 13 خواهیم داشت:
تولید شبکه
برای تولید شبکه حول اجزای مورد نظر، در هر مقطع در جهت طولی شبکه به دو شکل جلو و عقب، مقطع عمود بر جهت محیطی و جهت طولی تشان داده شده است. در شکل 2 نتیجه گیری از توزیع فشار بر روی مخروط در زاویه حمله 95 درجه 240 درجه می‌باشد.
به دست آمده با روش صریح تا نتایج آزمایشگاهی مقایسه شده است.
نتیجه‌ی به‌دست‌آمده‌ی از دقت قابل توجهی برخوردار است.
در شکل ۳ تأثیر به دست آمده‌ی از فواصل صریح و ضمیمی با تأثیر آزمایش‌گاهی در زاویه‌ی حمله ۸۰ درجه می‌باشد. به‌منظور مقایسه‌ی شده است. دقت در روش‌ی تقریباً یکسان است. این انطباق برای تمام روش‌ها نیز در نتایج بیشتر به منجر شده است. چکوه به‌هیچ‌یک دیل، در نتایج بعدی تنا بر روش‌های ضمیمی با تأثیر آزمایش‌گاهی شده است.
در شکل ۴ خطوط همباز و هم‌مراد در مقطع جریان در یک مقطع عموم بر جهت میلی‌تری در موقعیت خلقت با داده شده است. این شامل موج ضریبی بیرونی و ناحیه‌ی بعد از موج به شکل مشخصی می‌باشد.
در شکل ۵ خطوط همباز و هم‌مراد در یک مقطع عموم بر جهت طولی شناش داده است. این شامل موج ضریبی بیرونی و ناحیه‌ی بعد از موج به شکل مشخصی می‌باشد.
در شکل ۶ خطوط همباز و هم‌مراد در مقطع عموم بر جهت طولی شناش داده است. این شامل موج ضریبی بیرونی و ناحیه‌ی بعد از موج به شکل مشخصی می‌باشد.

ًًًٌ
شکل 11. توزیع فشار در محیط اگر شکسته در عدد ماخ 3 و زاویه حملهی 60°

شکل 8. توزیع فشار در محیط اگر شکسته در عدد ماخ 3 و زاویه حملهی 65°

شکل 12. توزیع فشار در محیط اگر شکسته در عدد ماخ 3 و زاویه حملهی 70°

شکل 13. توزیع فشار در محیط اگر شکسته در عدد ماخ 3 و زاویه حملهی 100°
پایه‌نویت

1. finite volume
2. secant ogive
3. navier-stokes equation
4. super computer
5. dissipative terms
6. upwinding
7. eigen values
8. fluxe
9. numerical fluxes
10. contravariant

منابع

10. Mazaheri, K and Abbasian, A., "Numerical solution of the

