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Manufacturing companies face issues due to demand for high-quality, affordable
products. Since maintenance costs account for 60—70% of production costs, real-time
fault detection is vital to lower maintenance expenses and extend equipment life.
This article introduces a high-performance anomaly detection framework using edge
computing for real-time industrial asset monitoring. Hardware and firmware were
designed to perform critical tasks such as data acquisition, preprocessing, feature
extraction, and algorithm training on the microcontroller unit (MCU), despite limited
processing and memory. Using a 3-axis accelerometer for vibration signals, the MCU
stores training data in Flash memory. An autoencoder with three hidden layers is
trained on the edge device to model normal operating conditions, and reconstruction
error of new data detects anomalies. This study is, to the best of our knowledge, the
first to train an artificial neural network (ANN) on an MCU for comprehensive edge-
based condition monitoring. achieved over 99.9% accuracy when validated on a

autoencoders,

- ) centrifugal pump.
rotating machines

Introduction

Rotating equipment, such as pumps and turbines, is critical to
industry, and their failures can cause significant financial and
safety issues. Therefore, methods like Condition Monitoring
(CM) and Prognostics and Health Management (PHM) are
used to detect faults at an early stage. Traditional maintenance
relies on regular inspections, which can be costly and
subjective. Recently, predictive maintenance has been
gaining popularity through data-driven approaches using
artificial intelligence and machine learning [1]. These
techniques make use of the vast amount of sensor data
available in industrial systems; however, processing and
transmitting this data demand substantial communication and
computing power.

Cloud-based frameworks [3,4] for remote condition
monitoring face challenges related to latency, bandwidth, and
scalability [5]. Edge computing addresses these issues by
processing data near its source [6], reducing dependence on
cloud servers. Although earlier studies [5,7,8] implement

trained models on edge devices, none achieve full on-device
full on-device learning, as they rely on prior training on PCs
or cloud platforms.

This work presents a self-learning edge device capable of
performing full data processing and model training locally. A
deep autoencoder trained only on normal data acts as a
novelty detector [10—12]. The proposed approach performs
unsupervised learning directly on the MCU, unlike previous
methods [13—18] that depend on pre-trained networks. This
provides a low-cost, standalone, adaptive solution for real-
time anomaly detection.

Methodology

Our approach combines feature engineering, a novelty
detector, and custom hardware, all optimized for on-edge
deployment. Considering MCU limitations, we initially
perform feature engineering on raw vibration samples,
extracting a total of 87 features from the time, frequency, and
time-frequency domains (Tables 1 and 2).
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For anomaly detection, we use an autoencoder (Fig. 1), a
neural network trained solely on data representing the
machine’s healthy condition. The network learns to precisely
reconstruct normal inputs; therefore, a high Mean Squared
Error (MSE) on new, unseen data indicates a fault. We
validate this method using a hydraulic test rig (Fig. 2) that
simulates three common pump faults: cavitation, a vane tip
fault (Fig.3), and an impeller crack (Fig. 4). The final device
hardware  (Fig.12) comprises an STM32H743ZI2
microcontroller with 1 MB RAM, an accelerometer, an XBee
wireless module, and two lithium-ion batteries.

Training the network within the MCU’s 1 MB RAM limit is
the main implementation challenge on the edge device. We
address this with a batch-based learning approach. Once
installed, the device begins a learning phase, collecting 400
healthy samples. Instead of storing all data at once, it trains
the network sequentially using four batches of 100 samples
each. The memory allocated to each batch is overwritten
immediately after processing, allowing the network to train
on the entire dataset without exceeding RAM limits.
Afterward, the device switches to monitoring mode. It
periodically collects new data, computes the 87 features, and
calculates the MSE. If the error remains normal, the device
remains in low-power mode. If the MSE exceeds the pre-set
anomaly threshold, it sends an alarm via the XBee module for
operator review.

Results and Discussion

We first confirmed the effectiveness of our feature
engineering; while the raw signals for healthy and faulty
states look similar (Fig. 5), the extracted features, especially
Wavelet Packet Decomposition (WPD), showed clear
distinctions (Fig. 6). We then optimized the autoencoder
architecture offline. A three-hidden-layer network performed
best (Fig. 7). After optimizing the learning rate (Fig. 8) and
dataset size (Fig. 9), we selected the final architecture detailed
in Table 3. We validated the batch-based training on a PC. As
shown in Fig. 10, the training loss remained stable across four
batches. This PC-trained model, tested on 2800 faulty and
600 unseen standard samples, achieved over 99.9%
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performance scores (Table 5). Fig. 11 and the confusion
matrix in Table 4 displayed a near-perfect separation of faulty
and healthy data.

After verifying the architecture, the complete algorithm was
transferred to the STM32H743ZI2 microcontroller. The
device successfully carried out on-edge data acquisition,
feature extraction, training, and anomaly detection (Fig. 13).
Although training took longer on the MCU (466s compared
to 3s on the PC, Table 6), the resulting model achieved near-
perfect classification metrics, with precision, recall, and
accuracy all equal to 1. The MSE distribution (Fig. 14)
distinguished healthy (<3) from faulty samples (MSE>500),
demonstrating high sensitivity to abnormal behavior.

These results confirmed that the proposed system can
independently learn and detect faults directly on the edge
device without external computing support. Despite the
MCU’s limited processing power, it achieved accuracy
comparable to that of offline training.

Conclusion

This paper presents a fully edge-based anomaly detection
system for rotating machines that performs complete neural
network training and inference on a microcontroller. Our
framework enables on-device training using a batch-based
method. This unsupervised online learning approach
effectively overcomes key limitations of existing systems. It
removes the need for unavailable faulty data and avoids the
costly latency associated with cloud computing. Additionally,
because training occurs on the edge, the device is highly
adaptable and not limited to a single machine, unlike offline-
trained models. We developed a lightweight autoencoder and
deployed the entire model, including its custom training
algorithm, onto a low-cost, low-power MCU. The device can
learn the unique healthy behavior of any attached rotating
machine. Validation on a centrifugal pump confirms the
device’s ability to detect faults with near-perfect accuracy,
demonstrating the high sensitivity and effectiveness of the
on-device-trained model.
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Table 2. Frequency domain features.
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Figure 1. an autoencoder with one hidden layer.
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Figure 5. The vibration signal of the pump under healthy
and cavitation conditions.
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Figure 6. (a) Time domain, (b) Frequency domain, (c) Time-frequency domain extracted features of the pump under healthy

and cavitation conditions.
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Figure 7. (a) The reconstruction losses of five
autoencoders with different depths,
(b) Performance of the networks with different depths.
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Table 3. The architecture of the proposed autoencoder.

Layer No. of Activation Function
Neurons
Input 87 Linear
1st hidden )
Layer 40 Hyperbolic tangent
2nd hidden 25 Sgmid
layer
3rd hidden .
layer 40 Hyperbolic tangent
Output 87 Sigmoid

dnlone ¥ JIF slaadoles 3l oolial b T (FN) 0315 aso 57 (FP) L3ls

loads
TP
Precision = ——— 4)
TP+ FP

TP

Recall = —— (%)
TP+ FN
TP+TN

Accuracy = (6)

TP+ FN+FP+TN

2xTP
F1-Score = @)
2xTP+ FP+ FN

IKo 0 g Shotolass aoldl L e Jow g3lesl glas ol (@) Y USG50
g so oaalice sadio il b)) Jlxe § ululy leaSis o Slae «(b) ¥
0392 sl Leas VB Y 5os b loaSiets bjgel ai] 3 @)V S 3llas
WJ ol b el oo | Koo Jgud LB g b polie 4 o] slallas
Mé%oﬂ&b)@@w)o&wbwf(b)Vﬁ@M
O Bo2) B Y aw b aSlld oplply ol ails by Joo plo a
G865 lemn .l 0als Sl gty (sdalol (gl aign Jow olerea
99 9 (5999 Lgﬁy 6L°u9)54 Slaws el o0l ﬂ‘)l Y J5J> e 6»}[{,.«“4

40 False Positive



Ohe g oilas Lo ple - egias crac sloaSis jloolitul b g slacuidle ;o slad b, p (gie 5 lrial (aseis

(a)
0.06 - T T T T T T T T T A
No. oF Training Samples

b - = =200

0.05 ¢ = == 400
: AAAAAAAAAAAAA 600
. 800

0.04 1

Loss value
o
o
w

(o
Q
]
| ys—
s
.

0.01

0 T
0 20 40 60 80 100 120 140 160 180 200
(b) Epoch
: PSS
. Al No. oF Training Samples
4-5’/ ) - ©- 200
0.995 - Hox

0.99 -
y
0.985 Vs b .
3 &L B ommmmmmmmn o
s 7z !
o ’
0.98 '
'
.
/
,
0.975 |- o
,
/
.
f
0.97 .
,
)
0.965 : : : .
Precision Recall Accuracy FiScore

Scores

Figure 9. (a) The reconstruction loss, and (b) The
performance of the autoencoder four different training
dataset size.
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Figure 8. (a) The reconstruction loss, and (b) The
performance of the autoencoder with three hidden
layers and five different learning.
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Table 4. Confusion Matrix.

Predicted .
Healthy Predicted Faulty
Actual 599 (True -
Healthy Negative) 1 (False Positive)
Actual Faulty 0 (False 2800 (True Positive)
Negative)
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Table S. Model performance score.

F1
Criteria Precision Recall Accuracy
Score
Score 0.9996 1 0.9997 0.9998
() -
) ® @ o
(b)

Figure 12. (a) Various components of the device, (b)
Photo of the device.
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Figure 10. Training and validation costs in batch-based
training.
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Figure 13. The algorithm flowchart for edge computing.
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Figure 14. (a) Training and validation losses of the
network while training on MCU and

(b) The healthy and faulty data MSEs after training the
autoencoder on the MCU.
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