Sharif Mechanical Engineering Journal (2025), 41(2), 137-150

Sharif University of Technology sl
Sharif Mechanical Engineering Journal

https://sime.journals.sharif.edu

Optimal Vibration Control of Bladeless Wind Power Generators

Mahsa Pehlavanzadeh, Mohsen Irani Rahaghi * and Mehdi Mohammadi Mehr

Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran.

* corresponding author:(Irani@kashanu.ac.ir)

Article Info Abstract

The global energy crisis has drawn growing attention to bladeless wind power generators
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(BWPGs), which convert wind-induced vibrations into electricity. Their efficiency

depends on keeping the natural frequency within resonance. This study presents an
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optimal control strategy for BWPGs using variable structural stiffness governed by the
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rod’s effective length. Continuous tuning keeps the natural frequency aligned with the
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vortex-shedding frequency, maximizing harvested power. The influence of stiffness,
mass, and damping is analyzed, and design parameters such as geometry are optimized
to maintain resonance under changing wind speeds. Numerical simulations agree with

experiments, confirming the accuracy and effectiveness of the proposed model and

Introduction

This research investigates the vibration analysis and control
of bladeless wind power generators (BWPGs) that use a
flexible cantilever rod to convert wind-induced oscillations
into electrical energy. The dynamic behavior is modeled
through free and forced vibration analyses of sandwich beams
with  thickness-dependent material properties. Using
Hamilton’s principle, governing equations are derived and
solved with trigonometric functions under various boundary
conditions, showing good agreement with previous studies.
The effects of parameters such as length-to-thickness ratio,
honeycomb and auxetic cores, porosity, and reinforcement
with graphene nanoplatelets (GPLs) and carbon nanotubes
(CNTs) are examined. Results show that honeycomb cores
and GPL reinforcement markedly increase the natural
frequency, where even 1 wt% GPL provides notable
improvement. GPLs offer a cost-effective alternative to
CNTs, potentially boosting power output by up to 300%. To
maximize energy harvesting, the natural frequency is
controlled to remain close to the vortex-shedding frequency.

Methodology

The schematic in Figure 2 illustrates the concept of the
bladeless wind power generator (BWPG) investigated in this
study. The research focuses on optimal vibration control of
the rod to maximize harvested power.

Material selection for the composite rod follows a
comparative study summarized in Figures 3-4, identifying a
positive-Poisson-ratio honeycomb core and graphene
nanoplatelet (GPL) reinforcement as the most effective
material configuration.

BWPGs operate on vortex-induced vibration (VIV): as
airflow passes a cylindrical or conical rod, alternating
vortices create oscillatory lift forces that excite the structure.
The motion is converted into electricity through
electromagnetic, piezoelectric, or electrostatic transducers.
Key components include the vibrating rod, base, control
system for stiffness or length tuning, and a storage unit with
rectifiers and batteries.

For performance optimization, the rod is modeled as a
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sandwich composite beam. Several cores—aluminum and
polymer honeycombs and metallic foams—were compared,
with the honeycomb core showing the best dynamic behavior.
Among reinforcements, GPL yielded the highest response
across three tested distributions: uniform, symmetric, and
asymmetric.

The system dynamics follow a single-degree-of-freedom
mass—spring—damper model derived from the Euler—
Lagrange equation. The stiffness, £, is adjusted to maintain
resonance between the natural and vortex-shedding
frequencies. Harvested power, mainly governed by damping,
is calculated from Eq. (3) and summarized in Table 3. The
constant-length baseline serves as reference for comparison.
For control, an optimal dynamic optimization problem was
formulated with design variables (length, stiffness, damping)
and constraints on motion and actuation. The Bolza-type cost
function was minimized using MATLAB’s fmincon after
discretization via the collocation method. The optimized
parameters were applied to a nonlinear feedback controller
(Figure 10), enabling real-time adaptation of rod length to
maintain resonance as wind speed varies.

Results and Discussion

- Power Improvement and Control Effect

In the baseline case, harvested power is limited to narrow
wind-speed bands. With optimal length control, output
significantly improves—up to twofold enhancement for
certain wind conditions (Table 4). At U = 4m/s, the optimal
and fixed lengths coincide, producing similar power levels.

- Effect of Wind Speed and Diameter

The interaction between wind speed (U) and diameter (D) on
the optimal length was analyzed through 3D plots. Figure 11
shows that higher wind speeds require shorter rods, while
larger diameters demand longer rods. Figure 12 demonstrates
the nonlinear dependency of extracted power on both
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parameters, highlighting optimal performance zones where
resonance is sustained.

- Influence of Viscoelastic Damping

As BWPGs harvest energy from oscillations, internal
damping strongly affects stability and power. A Kelvin—
Voigt model was used to represent time-dependent damping.
Figure 15 shows normalized power for different materials:
higher damping lowers amplitude and output, with metal
foams and honeycomb cores performing worse than carbon-
and glass-fiber composites.

- Optimal Material Configuration and GPL Distribution
Among the three GPL distributions, the configuration
combining the positive-Poisson-ratio honeycomb core with
GPL-reinforced skins achieved the best compromise between
stiffness tuning and damping loss, maintaining resonance
over a wide range of wind speeds. This confirms the
effectiveness of the proposed material configuration and
length-based control approach.

Conclusion

The results indicate that the proposed control and
optimization strategy can substantially improve the efficiency
of bladeless wind power generators. The approach allows
designers to select suitable materials and structural
dimensions based on environmental conditions and design
limits. This study marks an important step toward enhancing
the performance and reliability of BWPGs and promoting
more efficient wind-energy utilization.

The outcomes can guide the design of next-generation
bladeless turbines with higher conversion efficiency. When
maximum power, stability, and low weight are required,
carbon-fiber reinforcement is the most effective choice, while
glass-fiber composites provide a more cost-efficient
alternative with acceptable performance.
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Figure 3. Effect of different cores on the natural
frequency.
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Figure 7. Validation of Structural Rod Tip Displacement.
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Table 1. Mechanical and geometric properties.

Veore = 0342,

Mechanical ~
properties of the Peore = 4430(kg/m3)
core Ecorefl 13.8 (GPa)
(Ti-6A1-4V)

Ecnr = 5.6466 (TPa),
VCNT = 0.175,

pent = 1400(kg/m3)
En=2.5(GPa),
Vent =0.12, vin = 0.3
pm= 1190 (kg/m3)
L=20h,n=0.137,

Material constants
of the composite
face sheets

Geometric

roperties
prop 13 =0.715
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Table 2. Validation of the first three frequencies.

This Safari et Error
Mode number study al. (%)
1 0.1383 0.1384 0.07
2 0.5458 0.5405 0.98
3 1.2022 1.1825 1.66
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Table 3. Power calculation for different velocities.
Wind velocity (m/s) Power (w)

0.5 0.02864
0.4951
0.0246
0.0246
0.0386
0.0505
0.0674
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Figure 12. 3D plot of extracted power versus wind
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Table 4. Extracted power in optimal and non-optimal

conditions.
Wind Power at | Extracted
. constant power at | Percentage
velocity . .
(m/s) length optimal increase
(w) length (w)

1 0.34 0.63 85.29
2 1.65 3.34 100.02
3 4.32 7.62 76.39
4 12.97 13.12 1.15
5 9.37 13.43 30.23
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Figure 13. Optimal beam length vs wind speed.
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Figure 14. Ratio of structural natural frequency to
vortex-shedding frequency.
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Figure 15. Extracted power for different materials
considering viscoelastic damping.
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