\شماره٪٪۱
Rostami, A.B. and Armandei, M., 2017. Renewable energy harvesting
by vortex-induced motions: Review and benchmarking of technologies.
{\it Renewable
and Sustainable Energy Reviews}, {\it 70}, pp.193-214.
https://doi.org/10.1016/j.rser.2016.11.202.
\شماره٪٪۲
Thomas, J.P., Qidwai, M.A. and Kellogg, J.C. 2006. Energy scavenging
for small-scale unmanned systems. {\it Journal of Power Sources}, {\it 159}(2),
pp.1494-1509. https://doi.org/10.1016/j.jpowsour.2005.12.084.
\شماره٪٪۳
Ehsanul Kabira., Pawan Kumar., Sandeep Kumarc., Adedeji A.
Adelodund. and Ki-Hyun Kime., 2018. Solar energy: Potential and
future prospects. {\it Renewable and Sustainable Energy Reviews}, {\it 82},
pp.894-900. https://doi.org/10.1016/j.rser.2017.09.094.
\شماره٪٪۴
Xiang, J., Yan, Y. and Li, D., 2014. Recent advance in nonlinear
aeroelastic analysis and control of the aircraft. {\it Chinese Journal
of Aeronautics},
{\it 27}(1), pp.12-22. https://doi.org/10.1016/j.cja.2013.12.009.
\شماره٪٪۵
Farshidiyanfar, A. and Naranjani, Y., 2011. Extraction of
clean and unlimited energy from self-excited vibrations caused
by vortices. Mechanical Engineering, 77, pp.73-85. [In Persian].
https://sid.ir/paper/450706/fa.
\شماره٪٪۶
Dhakar, L., 2017. Triboelectric Devices For Power Generation
and Self-powered Sensing Applications. Springer.
\شماره٪٪۷
Ikeda, T., 1996. {\it Fundamentals of Piezoelectricity. Illustrated
ed}. Oxford University Press.
\شماره٪٪۸
Dikshit, T., Shrivastava, D., Gorey, A., Gupta, A., Parandkar,
P. and Katiyal, S., 2010. Energy harvesting via piezoelectricity.
{\it BVICAM's International Journal of Information Technology}, {\it 2}(2),
pp.265-270.
\شماره٪٪۹
Wang, D.A. and Ko, H.H., 2010. Piezoelectric energy harvesting
from flow-induced vibration.
{\it Journal of Micromechanics and Microengineering},
{\it 20}(2),
p.025019. DOI:10.1088/0960-1317/20/2/025019.
\شماره٪٪۱۰
10. Lallart, M., Pruvost, S. and Guyomar, D., 2011. Electrostatic
energy harvesting enhancement using variable equivalent permittivity.
{\it Physics
Letters A}, {\it 375}(45), pp.3921-3924.
https://doi.org/10.1016/j.physleta.2011.09.043.
\شماره٪٪۱۱
Bouzelata, Y., Kurt, E., Uzun, Y. and Chenni, R., 2018. Mitigation
of high harmonicity and design of a battery charger for a new
piezoelectric wind energy harvester. {\it Sensors and Actuators A:
Physical}, {\it 273}, pp.72-83. https://doi.org/10.1016/j.sna.2018.02.023.
\شماره٪٪۱۲
Alaei, E., Afrasiab, H. and Dardel, M., 2020. Analytical and
numerical fluid-structure interaction study of a microscale piezoelectric
wind energy harvester. {\it Wind Energy}, {\it 23}(6), pp.1444-1460.
https://doi.org/10.1002/we.2502.
\شماره٪٪۱۳
Bungartz, H.J. and Schafer, M.,
2006. Fluid-structure interaction:
Modelling. {\it Simulation, Optimisation}, {\it
53}, Springer Science \& Business
Media.
\شماره٪٪۱۴
Singh, K., Sadeghi, F., Russell, T., Lorenz, S., Peterson,
W., Villarreal, J. and Jinmon, T., 2021. Fluid-structure interaction
modeling of elastohydrodynamically lubricated line contacts. {\it Journal
of Tribology}, {\it 143}(9). https://doi.org/10.1115/1.4049260.
\شماره٪٪۱۵
Du, X., Zhao, Y., Liu, G., Zheng, M., Wang, Y., and Yu, H.,
2020. Enhancement of the piezoelectric cantilever beam performance
via vortex-induced vibration to harvest ocean wave energy. {\it Shock
and Vibration}, 2020, pp.1-11. https://doi.org/10.1155/2020/8858529.
\شماره٪٪۱۶
Wu, N., Bao, B. and Wang, Q., 2021. Review on engineering
structural designs for efficient piezoelectric energy harvesting
to obtain high power output. {\it Engineering Structures}, {\it 235}, p.112068.
https://doi.org/10.1016/j.engstruct.2021.112068.
\شماره٪٪۱۷
Lee, G., Lee, D., Park, J., Jang, Y., Kim, M. and Rho, J.,
2022. Piezoelectric energy harvesting using mechanical metamaterials
and phononic crystals. {\it Communications Physics}, {\it 5}(1), p.94.
http://dx.doi.org/10.1038/s42005-022-00869-4.
\شماره٪٪۱۸
Zhang, L., Zhang, F., Qin, Z., Han, Q., Wang, T. and Chu,
F., 2020. Piezoelectric energy harvester for rolling bearings
with capability of self-powered condition monitoring. {\it Energy},
{\it 238}, p.121770. https://doi.org/10.1016/j.energy.2021.121770.
\شماره٪٪۱۹
Zhu, H. and wang, K., 2019.
Wake
adjustment and vortex-induced vibration of a circular cylinder
with a C-shaped plate at a low Reynolds number of 100, {\it Physics
of Fluids}, {\it 31}(10). https://doi.org/10.1063/1.5124818.
\شماره٪٪۲۰
Esmaeili, M., Rabiee, A.H. and Bayandar, P., 2020. Numerical
simulation of fluid-structure interaction and vortex induced
vibration of the circular and truncated cylinders. {\it Journal of
Hydraulics}. https://doi.org/10.30482/jhyd.2020.219014.1438.
\شماره٪٪۲۱
Wang, J., Zhao, W., Su, Z., Zhang, G., Li, P. and Yurchenko,
D., 2020. Enhancing vortex-induced vibrations of a cylinder with
rod attachments for hydrokinetic power generation. {\it Mechanical
Systems and Signal Processing}, {\it 145}.
https://doi.org/10.1016/j.ymssp.2020.106912.
\شماره٪٪۲۲
Amiraslanpour, M., Ghazanfarian, J. and S.E. Razavi., 2017.
Drag suppression for 2D oscillating cylinder with various arrangement
of splitters at Re =100: A high-amplitude study with OpenFOAM. {\it Journal
of Wind Engineering and Industrial Aerodynamics}, {\it 164}, pp.128-137.
https://doi.org/10.1016/j.jweia.2017.02.018.
\شماره٪٪۲۳
Pan, F., Xu, Z., Jin, L., Pan, P. and Gao, X., 2017. Designed
simulation and experiment of a piezoelectric energy harvesting
system based on vortex-induced vibration. {\it IEEE Transactions on
Industry Applications}, {\it 53}(4), pp.3890-3897.
https://doi.org/10.1109/tia.2017.2687401.
\شماره٪٪۲۴
Belov, A., Martinelli, L. and Jameson, A., 1995. A new implicit
algorithm with multigrid for unsteady incompressible flow calculations.
In 33rd Aerospace Sciences Meeting and Exhibit.
\شماره٪٪۲۵
Rogers, S.E. and Kwak, D., 1990. Upwind differencing scheme
for the time-accurate incompressible Navier-Stokes equations. {\it AIAA
Journal}, {\it 28}(2), pp.253-262. https://doi.org/10.2514/3.10382.
\شماره٪٪۲۶
Lecoint, Y. and Piquet, J., 1984. On the use of several compact
methods for the study of unstedy incompressible viscous flow
round a circular cylinder. {\it Computers} \& {\it Fluids}, {\it
12}(4), 255-280.
https://doi.org/10.1016/0045-7930(84)90009-4.
\شماره٪٪۲۷
Rosenfeld, M., Kwak, D. and Vinokur, M., 1988. A solution
method for the unsteady incompressible Navier-Stokes equations
in generalized coordinate systems. In 26th Aerospace Sciences
Meeting.
\شماره٪٪۲۸
Ajiliyan Momtaz, A. and Farshidiyanfar, A., 2012. Numerical
simulation of the effect of using a control object on the system
response in the lock-in range in the vibrations induced by the
vortex flow current behind a cylinder placed on the elastic bed.
{\it 2nd International
Conference on Acoustics and Vibration}, Sharif University of
Technology, Tehran, Iran [In Persion].
\شماره٪٪۲۹
Hwang, J. Y. and Yang, K.S., 2007. Drag reduction on a circular
cylinder using dual detached splitter plates. {\it Journal of Wind
Engineering and Industrial Aerodynamics}, {\it 95}(7), pp.551-564.
https://doi.org/10.1016/j.jweia.2006.11.003.
\شماره٪٪۳۰
Ogunremi, A. and Sumner, D., 2015. The effect of a splitter
plate on the flow around a finite prism. {\it Journal of Fluids and
Structures},
{\it 59}, pp.1-21. https://doi.org/10.1016/j.jfluidstructs.2015.09.001.