\شماره٪٪۱
Zhang, X., G\"{a}risch, F.,
Chen, Z., Hu, Y., Wang, Z., Wang, Y.,
Xie, L., Chen, J., Li, J., Barth, J.V. and Narita, A., 2022.
Self-assembly and photoinduced fabrication of conductive nanographene
wires on boron nitride. {\it Nature Communications}, {\it 13}(1), p.442.
https://doi.org/10.1038/s41467-021-27600-1.
\شماره٪٪۲
Villag\'{o}mez,
C.J., Sasaki, T., Tour, J.M. and Grill, L., 2010.
Bottom-up assembly of molecular wagons on a surface. {\it Journal
of the American Chemical Society}, {\it 132}(47), pp.16848-16854.
https://doi.org/10.1021/ja105542j.
\شماره٪٪۳
Adorf, C.S., Moore, T.C., Melle, Y.J. and Glotzer, S.C., 2019.
Analysis of self-assembly pathways with unsupervised machine
learning algorithms. {\it The Journal of Physical Chemistry B}, {\it 124}(1),
pp.69-78. https://doi.org/10.1021/acs.jpcb.9b09621.
\شماره٪٪۴
Li, M., Li, S., Zhang, K., Chi, X., Zhou, H., Xu, H.B., Zhang,
Y., Li, Q., Wang, D. and Zeng, M.H., 2021. Coordination-directed
self-assembly of molecular motors: Towards a two-wheel drive
nanocar.
{\it Nanoscale},
{\it 13}(39), pp.16748-16754. https://doi.org/10.1039/D1NR05046J.
\شماره٪٪۵
Schmaltz, T., Khassanov, A., Steinr\"{u}ck, H.G., Magerl, A.,
Hirsch, A. and Halik, M., 2014. Tuning the molecular order of
C 60-based self-assembled monolayers in field-effect
transistors. {\it Nanoscale}, {\it 6}(21),
pp.13022-13027. https://doi.org/10.1039/C4NR03557G.
\شماره٪٪۶
Baskar, A.V., Benzigar, M.R., Talapaneni, S.N., Singh, G.,
Karakoti, A.S., Yi, J., Al-Muhtaseb, A.A.H., Ariga, K., Ajayan,
P.M. and Vinu, A., 2022. Self-assembled fullerene nanostructures:
Synthesis and applications. {\it Advanced Functional Materials}, {\it 32}(6),
p.2106924. https://doi.org/10.1002/adfm.202106924.
\شماره٪٪۷
Vaezi, M., Pishkenari, H.N. and Ejtehadi, M.R., 2022. Collective
movement and thermal stability of fullerene clusters on the graphene
layer. {\it Physical Chemistry Chemical Physics}, {\it
24}(19), pp.11770-11781.
https://doi.org/10.1039/D2CP00667G.
\شماره٪٪۸
Shirai, Y., Osgood, A.J., Zhao, Y., Yao, Y., Saudan, L., Yang,
H., Yu-Hung, C., Alemany, L.B., Sasaki, T., Morin, J.F. and Guerrero,
J.M., 2006. Surface-rolling molecules. {\it Journal of the American
Chemical Society},
{\it 128}(14), pp.4854-4864. https://doi.org/10.1021/ja058514r.
\شماره٪٪۹
Morin, J.F., Shirai, Y. and Tour, J.M., 2006. En route to a
motorized nanocar. {\it Organic Letters}, {\it 8}(8), pp.1713-1716.
https://doi.org/10.1021/ol060445d.
\شماره٪٪۱۰
Nemati, A., Meghdari, A., Nejat Pishkenari, H. and Sohrabpour,
S., 2018. Investigation into thermally activated migration of
fullerene-based nanocars. {\it Scientia Iranica}, {\it 25}(3), pp.1835-1848.
https://doi.org/10.24200/sci.2018.20321.
\شماره٪٪۱۱
Sasaki, T., Guerrero, J.M. and Tour, J.M., 2008. The assembly
line: Self-assembling nanocars. {\it Tetrahedron}, {\it 64}(36), pp.8522-8529.
https://doi.org/10.1016/j.tet.2008.05.074.
\شماره٪٪۱۲
Khatua, S., Godoy, J., Tour, J.M. and Link, S., 2010. Influence
of the Substrate on the Mobility of Individual Nanocars. {\it The
Journal of Physical Chemistry Letters}, {\it 1}(22), pp.3288-3291.
https://doi.org/10.1021/jz101375q.
\شماره٪٪۱۳
Khatua, S., Guerrero, J.M., Claytor, K., Vives, G., Kolomeisky,
A.B., Tour, J.M. and Link, S., 2009. Micrometer-scale translation
and monitoring of individual nanocars on glass. {\it ACS Nano}, {\it 3}(2),
pp.351-356. https://doi.org/10.1021/nn800798a.
\شماره٪٪۱۴
Chu, P.L.E., Wang, L.Y., Khatua, S., Kolomeisky, A.B., Link,
S. and Tour, J.M., 2013. Synthesis and single-molecule imaging
of highly mobile adamantane-wheeled nanocars. {\it ACS Nano}, {\it 7}(1),
pp.35-41. https://doi.org/10.1021/nn304584a.
\شماره٪٪۱۵
Jin, T., Garcia-L\'{o}pez,
V., Kuwahara, S., Chiang, P.T., Tour,
J.M. and Wang, G., 2018. Diffusion of nanocars on an air-glass
interface. {\it The Journal of Physical Chemistry C},
{\it 122}(33), pp.19025-19036.
https://doi.org/10.1021/acs.jpcc.8b05668.
\شماره٪٪۱۶
Sasaki, T., Morin, J.F., Lu, M. and Tour, J.M., 2007. Synthesis
of a single-molecule nanotruck. {\it
Tetrahedron Letters}, {\it 48}(33), pp.5817-5820.
https://doi.org/10.1016/j.tetlet.2007.06.081.
\شماره٪٪۱۷
Hosseini Lavasani, S.M., Nejat Pishkenari, H. and Meghdari,
A., 2019. How chassis structure and substrate crystalline direction
affect the mobility of thermally driven p-carborane-wheeled nanocars. {\it The
Journal of Physical Chemistry C}, {\it 123}(8), pp.4805-4824.
https://doi.org/10.1021/acs.jpcc.8b10779.
\شماره٪٪۱۸
Vives, G. and Tour, J.M., 2009. Synthesis of a nanocar with
organometallic wheels. {\it Tetrahedron Letters}, {\it 50}(13), pp.1427-1430.
https://doi.org/10.1016/j.tetlet.2009.01.042.
\شماره٪٪۱۹
Zhang, J., Osgood, A., Shirai, Y., Morin, J.F., Sasaki, T.,
Tour, J.M. and Kelly, K.F., 2007. Investigating the motion
of molecular machines on surfaces by STM: The nanocar and beyond.
{\it In 2007 7th IEEE Conference on Nanotechnology (IEEE NANO)}. (pp.
243-246). IEEE. https://doi.org/10.1109/NANO.2007.4601180.
\شماره٪٪۲۰
Rapenne, G. and Joachim, C., 2017. The first nanocar race. {\it Nature
Reviews Materials},
{\it 2}(6), pp.1-3. https://doi.org/10.1038/natrevmats.2017.40.
\شماره٪٪۲۱
Akimov, A.V., Nemukhin, A.V., Moskovsky, A.A., Kolomeisky,
A.B. and Tour, J.M., 2008. Molecular dynamics of surface-moving
thermally driven nanocars.
{\it Journal of Chemical Theory and Computation}, {\it 4}(4),
pp.652-656. https://doi.org/10.1021/ct7002594.
\شماره٪٪۲۲
Mofidi, S.M., Nejat Pishkenari, H., Ejtehadi, M.R. and Akimov,
A.V., 2021. Locomotion of the C60-based nanomachines on graphene
surfaces. {\it Scientific Reports}, {\it 11}(1), p.2576.
https://doi.org/10.1038/s41598-021-82280-7.
\شماره٪٪۲۳
Vaezi, M., Pishkenari, H.N. and Nemati, A., 2022. Mechanism
of the motion of nanovehicles on hexagonal boron-nitride: A molecular
dynamics study. {\it Computational Materials Science}, {\it 207}, p.111317.
https://doi.org/10.1016/j.commatsci.2022.111317.
\شماره٪٪۲۴
Nemati, A., Nejat Pishkenari, H., Meghdari, A. and Ge, S.S.,
2019. Controlling the diffusive motion of fullerene-wheeled nanocars
utilizing a hybrid substrate. {\it The Journal of Physical Chemistry
C}, {\it 123}(42), pp.26018-26030. https://doi.org/10.1021/acs.jpcc.9b08335.
\شماره٪٪۲۵
Nemati, A., Pishkenari, H.N., Meghdari, A. and Ge, S.S., 2020.
Directional control of surface rolling molecules exploiting non-uniform
heat-induced substrates. {\it Physical Chemistry Chemical Physics}, {\it
22}(46),
pp.26887-26900. https://doi.org/10.1039/D0CP04960C.
\شماره٪٪۲۶
Nemati, A., Nejat Pishkenari, H., Meghdari, A. and Ge, S.S.,
2020. Influence of vacancies and grain boundaries on the diffusive
motion of surface rolling molecules. {\it The Journal of Physical
Chemistry
C}, {\it 124}(30), pp.16629-16643. https://doi.org/10.1021/acs.jpcc.0c03697.
\شماره٪٪۲۷
Nemati, A., Pishkenari, H.N., Meghdari, A. and Sohrabpour,
S., 2018. Directing the diffusive motion of fullerene-based nanocars
using nonplanar gold surfaces. {\it Physical Chemistry Chemical
Physics}, {\it 20}(1),
pp.332-344. https://doi.org/10.1039/C7CP07217A.
\شماره٪٪۲۸
Vaezi, M., Nejat Pishkenari, H. and Ejtehadi, M.R., 2023.
Programmable transport of C60 by straining graphene substrate.
{\it Langmuir}, {\it 39}(12),
pp.4483-4494. https://doi.org/10.1021/acs.langmuir.3c00180.
\شماره٪٪۲۹
Sasaki, T., Guerrero, J.M., Leonard, A.D. and Tour, J.M.,
2008. Nanotrains and self-assembled two-dimensional arrays built
from carboranes linked by hydrogen bonding of dipyridones. {\it Nano
Research}, {\it 1}, pp.412-419. https://doi.org/10.1007/s12274-008-8041-4.
\شماره٪٪۳۰
Sezginel, K.B. and Wilmer, C.E., 2020. Modeling diffusion
of nanocars on a Cu (110) surface. {\it Molecular Systems Design} \&
{\it Engineering}, {\it
5}(7), pp.1186-1192. https://doi.org/10.1039/C9ME00171A.
\شماره٪٪۳۱
Kianezhad, M., Youzi, M., Vaezi, M. and Pishkenari, H.N.,
2022. Rectilinear motion of carbon nanotube on gold surface. {\it International
Journal of Mechanical Sciences}, {\it 217}, p.107026.
https://doi.org/10.1016/j.ijmecsci.2021.107026.
\شماره٪٪۳۲
Vaezi, M., Nejat Pishkenari, H. and Nemati, A., 2020. Mechanism
of C60 rotation and translation on hexagonal boron-nitride monolayer. {\it The
Journal of Chemical Physics}, {\it
153}(23). https://doi.org/10.1063/5.0029490.
\شماره٪٪۳۳
Vaezi, M. and Pishkenari, H.N., 2021. Comparison of Diffusive
Motion of C60 on Graphene and Boron Nitride Surfaces. {\it ArXiv Preprint
ArXiv:2108.00477}. https://doi.org/10.48550/arXiv.2108.00477.
\شماره٪٪۳۴
Kianezhad, M., Youzi, M., Vaezi, M. and Nejat Pishkenari,
H., 2023. Unidirectional motion of C60-based nanovehicles using
hybrid substrates with temperature gradient. {\it Scientific Reports},
{\it 13}(1),
p.1100. https://doi.org/10.1038/s41598-023-28245-4.
\شماره٪٪۳۵
Rafii-Tabar, H., 2004. Computational modelling of thermo-mechanical
and transport properties of carbon nanotubes. {\it Physics Reports},
{\it 390}(4-5),
pp.235-452. https://doi.org/10.1016/j.physrep.2003.10.012.
\شماره٪٪۳۶
Nos\'{e},
S., 1984. A unified formulation of the constant temperature
molecular dynamics methods. {\it The Journal of Chemical Physics}, {\it 81}(1),
pp.511-519. https://doi.org/10.1063/1.447334.
\شماره٪٪۳۷
Hoover, W.G., 1985. Canonical dynamics: Equilibrium phase-space
distributions. {\it Physical Review A}, {\it 31}(3), p.1695.
https://doi.org/10.1103/PhysRevA.31.1695.
\شماره٪٪۳۸
Plimpton, S., 1995. Fast parallel algorithms for short-range
molecular dynamics. {\it Journal of Computational Physics}, {\it 117}(1),
pp.1-19. https://doi.org/10.1006/jcph.1995.1039.
\شماره٪٪۳۹
Vaezi, M., Pishkenari, H.N. and Ejtehadi, M.R., 2022. Nanocar
swarm movement on graphene surfaces. {\it Physical Chemistry Chemical
Physics}, {\it 24}(45), pp.27759-27771. https://doi.org/10.1039/D2CP03856K.
\شماره٪٪۴۰
Mofidi, S.M., Nejat Pishkenari, H., Ejtehadi, M.R. and Akimov,
A.V., 2019. Role of graphene surface ripples and thermal vibrations
in molecular dynamics of C60. {\it The Journal of Physical Chemistry
C}, {\it 123}(32), pp.20026-20036. https://doi.org/10.1021/acs.jpcc.9b03947.