\شماره٪٪۱
Manahan, M.P. and Siewert, T.A., 2006. The history of instrumented
impact testing, {\it Journal of ASTM International}, {\it 31}(2),
https://doi.org/10.1520/JAI12867.
\شماره٪٪۲
Maxey, W.A., 1974. Fracture initiation, propagation, and arrest.
5th Symposium on Line Pipe Research, Houston, USA.
\شماره٪٪۳
Zhu, X.-K. and Leis, B.N., 2013. Ductile fracture arrest
methods for gas transmission pipelines using Charpy impact energy
of DWTT energy. {\it Journal of Pipeline Engineering}, pp.259-272.
\شماره٪٪۴
Hashemi, S.H., 2009. Correction factors for safe performance
of API X65 pipeline steel. {\it International Journal of Pressure
Vessels and Piping}, {\it 86}, pp.533-540.
https://doi.org/10.1016/j.ijpvp.2009.01.011.
\شماره٪٪۵
Hashemi, S.H., 2008. Apportion of Charpy energy in API 5L
grade X70 pipeline steel. {\it International Journal of Pressure Vessels
and
Piping},
{\it 85}, pp. 879-884. https://doi.org/10.1016/j.ijpvp.2008.04.011.
\شماره٪٪۶
Hashemi, S.H., Howard, I.C., Yates, J.R. and Andrews, R.M.,
2004. The transferability of micro-mechanical
damage parameter in modern line pipe steel. {\it European Conf. on
Fracture}, Stockholm, Sweden.
\شماره٪٪۷
Hashemi, S.H., Howard, I.C., Yates, J.R. and Andrews, R.M.,
2005. Measurement and analysis of impact
test data for X100 pipeline steel. {\it Applied Mechanics and Materials},
{\it 3-4},
pp.369-376. https://doi.org/10.4028/www.scientific.net/AMM.3-4.369.
\شماره٪٪۸
Hashemi, S.H., Howard, I.C., Yates, J.R., Andrews, R.M. and Edwards, A.M.,
2006. Estimation of slant tearing energy
for high-grade pipeline steel from instrumented Charpy test data
and its transferability to large structures. {\it 6th Int. Pipeline
Conf}, Calgary, Alberta, Canada. https://doi.org/10.1115/IPC2006-10069.
\شماره٪٪۹
Hashemi, S.H. and Jalali, M.R., 2006. Experimental study of
Charpy impact characteristics of high strength spiral welded
gas pipeline. {\it Int Pipeline Conf}, Calgary, Alberta, Canada,
https://doi.org/10.1115/IPC2006-10068.
\شماره٪٪۱۰
Hashemi, S.H. and Jalali, M.R., 2008. Evaluation of fracture
initiation energy in API X65 pipeline steel. {\it 7th Int. Pipeline
Conf}., Calgary, Alberta, Canada. https://doi.org/10.1115/IPC2008-64149.
\شماره٪٪۱۱
Lucon, E., McCowan, C.N. and Santoyo, R.L., 2016. Overview
of NIST activities on sub-size and miniaturized charpy specimen:
Correlation with full-size specimens and verification specimens
for smal-scale pendulum machines. {\it Journal of Pressure Vessel
Technology}. https://doi.org/10.1115/1.4032474.
\شماره٪٪۱۲
Lucon, E., McCowan, C.N. and Santoyo, R.L., 2015. Impact
characterization line pipe steels by means of standard sub-size
and miniaturized Charpy specimens. {\it National Institute of Standards
and Technology}. http://dx.doi.org/10.6028/NIST.TN.1865.
\شماره٪٪۱۳
Lucon, E., 2016. Estimating dynamic ultimate tensile strength
from instrumented Charpy data. {\it Materials and Design}, {\it 97}, pp.
437-443. https://doi.org/10.1016/j.matdes.2016.02.116.
\شماره٪٪۱۴
Lucon, E., 2016. Experimental assessment of equivalent strain
for an instrumented Charpy test. {\it Journal of Research of the National
Institute of Standards and Technology}, {\it 121}, pp.165-179.
https://doi.10.6028/jres.121.007.
\شماره٪٪۱۵
Hosseinzadeha, A., Hashemi, S.H., Rastegari, H. and Maraki, M.R.,
2022. Investigation of the notch
depth effect on Charpy fracture energy and fracture surface features
of API X65 steel. {\it Canadian Metallurgical Quarterly}. {\it 35},
https://doi.org/10.1080/00084433.2022.2066241.
\شماره٪٪۱۶
Shahsavani, A.R. and Hashemi, S.H., 2020. Experimental and
numerical investigation of initial notch radius effect on Charpy
fracture energy in API X65 steel. {\it Amirkabir Journal of Mechanical
engineering},
{\it 52}(5), pp.1139-1152.
[In Persian].
https://doi.10.22060/MEJ.2018.14130.5804.
\شماره٪٪۱۷
Sadr, J., Hashemi, S.H. and. MajidiJirandehi, A.A., 2023.
Determination of energy-notch depth relationship using force-displacement
diagrams in instrumented Charpy impact testing of API X65 steel.
{\it Journal of Solid and Fluid Mechacnis}, {\it 12}(6), pp.149-162.
[In Persian].
https://doi.10.22044/JSFM.2023.12084.3624.
\شماره٪٪۱۸
Wang, W., Wang, P., Liu, X., Dong, Z. and Fang, H.,
2021. Mathematical model for Charpy impact energy
of V-notch specimen. Advances in Materials Science and Engineering,
ID 5330068. https://doi.org/10.1155/2021/5330068.
\شماره٪٪۱۹
Hong, S., Shin, S.Y., Lee, S. and Kim, N.J.,
2011. Effects of specimen thickness and
notch shape on fracture modes in the drop weight tear test of
API X70 and X80 linepipe steels. {\it Metallurgical and Materials
Transactions A}, {\it 42}(9), pp.2619-2632.
https://doi.org/10.1007/s11661-011-0697-9.
\شماره٪٪۲۰
Shin, S.Y., Hwang, B., Lee, S. and Kang, K.B.,
2007. Effects of notch shape and specimen
thickness on drop-weight tear test properties of API X70 and
X80 line-pipe steels. {\it Metallurgical and Materials Transactions
A}, {\it 38}(3), pp.537-551. https://doi.org/10.1007/s11661-006-9073-6.
\شماره٪٪۲۱
Pereira, L.C., Garcia de Blas, J.C., Griza, S. and Darwish, F.A.I.,
2021. Use of instrumented Charpy testing
on the fracture toughness characterization of metallic materials.
{\it Tecnologia em Metalurgia, Materiais e Minera\c{c}\~{a}o},
{\it 18}, pp.1-11.
http://dx.doi.org/10.4322/2176-1523.20212469.
\شماره٪٪۲۲
API Specification 5L. 2013. Specification for line pipe.
\شماره٪٪۲۳
Hashemi, S.H., 2011. Strength hardness statistical correlation
in API X65 steel. {\it Materials Science and Engineering A}, {\it 528}, pp.
1648-1655. https://doi.org/10.1016/j.msea.2010.10.089.
\شماره٪٪۲۴
Hashemi S.H., and Mohammadyani, D. 2012. Characterisation
of weldment hardness, impact energy and microstructure in API
X65 steel. {\it International Journal of Pressure Vessels and Piping},
{\it 98}, pp.8-15. https://doi.org/10.1016/j.ijpvp.2012.05.011.
\شماره٪٪۲۵
Majidi-Jirandehi, A.A., Hashemi, S.H., Ebrahimi-Nejad, S. and Kheybari, M.,
2021. Impact of crack propagation
path and inclusion elements on fracture toughness and micro-surface
characteristics of welded pipes in DWTT. {\it Material Research Express},
{\it 8}, https://doi.10.1088/2053-1591/ac2ae0.
\شماره٪٪۲۶
Tazimi, M., Hashemi, S.H. and Rahnama, S., 2020. Experimental
study of fractire surface characteristics if inhomogeneuosly
drop weight tear test specimen made from API X65 steel. {\it Journal
of Solid and Fluid Mechacnis}, {\it 10}(1), pp.77-91.
[In Persian].
https://doi.10.22044/JSFM.2020.9029.3053.
\شماره٪٪۲۷
ASTM E23-16b, 2016. Standard test methods for notched bar
impact testing of metallic materials.
\شماره٪٪۲۸
ASTM A370-16, 2016. Standard test method and definitions
for mechanical testing of steel products.
\شماره٪٪۲۹
ASTM E2298-13a, 2013. Standard test method for instrumented
impact testing of metallic materials.
\شماره٪٪۳۰
BS EN ISO 14556, 2002. Steel-Charpy V-notch pendulum impact
test-Instrumented test method.
\شماره٪٪۳۱
Vodopivec, F., Arzensek, D., Vojvodi-Tuma, J. and Celin, R.,
2008. The Charpy fracture process
in ductile range. {\it Metalurgija}, {\it 47}, pp.173-179.
https://hrcak.srce.hr/22656.
\شماره٪٪۳۲
Vodopivec, F., Arzensek, B., Kmeti, D. and Vojvodi-Tuma, J.,
2003. On the Charpy fracture process.
{\it Materiali
In Tehnologije}, {\it 37}(6), p.317. UDK 669.14.018.298:539.42.
\شماره٪٪۳۳
ISO 148-2., 2009. Metallic materials-Charpy pendulum impact
test-Part 2: Verification of testing machines.
\شماره٪٪۳۴
Panin, S.V., Maruschak, P.O., Vlasov, I.V. and Ovechkin, B.B.,
2016. Impact toughness of 12Cr1MoV steel
Part1-Influence of temperature on energy and deformation parameters
of fracture. {\it Theoretical and Applied Fracture Mechanics}, {\it 83},
pp.105-113. https://doi.org/10.1016/j.tafmec.2015.12.008.
\شماره٪٪۳۵
Panin, S.V., Maruschak, P.O. Vlasov, I.V., Sergeev, V.P., Ovechkin, B.B.
and Neifeld, V.V.,
2016. Impact toughness of 12Cr1MoV steel.
Part 2-Influence of high intensity ion beam irradiation on energy
and deformation parameters and deformation parameters and mechanisms
of fracture. {\it Theoretical and Applied Fracture Mechanics}. {\it 83},
pp.82-92. https://doi.org/10.1016/j.tafmec.2015.12.009.
\شماره٪٪۳۶
Panin, S.V., Vassel, A., Maruschak, P.O., Moiseenko, D.D., Berto, F. and
Vinogradov, A.,
2017. Influence of stress concentrator
shape and testing temperature on impact bending fracture of 17Mn1Si
pipe steel. {\it Presented at the AIP Conf. Proceedings}.
https://doi.org/10.1063/1.5017392.
\شماره٪٪۳۷
Hojjati, R., Steinhoff, M., Cooreman, S., Van den Abeele, F. and Verleysen, P.,
2016. Effect of high strain rate on
ductile slant fracture behaviour of pipeline steel-experiments
and modeling. {\it In 11th Int. Pipeline Conf}., Calgary, Alberta,
Canada. https://doi.org/10.1115/IPC2016-64332.
\شماره٪٪۳۸
Mohitzadeh, S.S. and Hashemi, S.H., 2020. Experimental and
numerical evaluation of momentum variation effect of striker
on fracture energy in Charpy impact testing of API X65 steel.
{\it Modares Mechanical Engineering}, {\it 20}(9), pp.2275-2287.
[In Persian].
http://mme.modares.ac.ir/article-15-38867-en.html.
\شماره٪٪۳۹
Barin, M.R, 2016. Identification of scatter factors and
statistical analysis of Charpy fracture energy variations in
API X65 steel. MSc. Thesis, Mechanical engineering, University
of Birjand. [In Persian].