1. Zhendong, H. and Jiazhen, H., 1999. Modeling and analysis of a coupled rigid-flexible system. Journal of Applied Mathematics and Mechanics, 20 (10), pp. 1167-1174. https://doi.org/10.1007/BF02460335.
2. Lu, Y. h., Zeng, J., Wu, P. b. and Guan, Q. h., 2009. Modeling of rigid-flexible coupling system dynamics for railway vehicles with flexible bogie frame. Fourth International Conference on Innovative Computing, Information and Control (ICICIC), Kaohsiung, Taiwan, pp. 1355-1360. https://doi.org/10.1109/ICICIC.2009.265.
3. Zhang, G., Lu, N. and Che, R., 2011. Dynamic analysis on rigid-flexible coupled multi-body system with a few flexible components. International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Xi'an, pp. 1010-1015. https://doi.org/10.1109/ICQR2MSE.2011.5976775.
4. Sun, G. and Zhu, Z. H., 2015. Fractional-order dynamics and control of rigid–flexible coupling space structures. Journal of Guidance, Control and Dynamics, 38 (7), pp. 1324-1330.
https://doi.org/10.2514/1.G001046.
5. Taghirad. H., Fathi. M and Zamani. F., 2018. Robust H-infinity control, K. N. Toosi University of Technology Publication, 3th Edition. ]In Persian[
6. Tavazoei, M. S. and Tavakoli, M., 2015. Fractional order systems and controllers, K. N. Toosi University of Technology Publication. ]In Persian[.
7. Valério, D., 2013. An introduction to fractional control. The Institution of Engineering and Technology (IET) Publication, London.
8. Delavari, H., Ghaderi, R., Ranjbar, A. and Momani, S., 2010. Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 15 (4), pp. 963-978.
https://doi.org/10.1016/j.cnsns.2009.05.025.
9. Tang, Y., Zhang, X., Zhang, D., Zhao, G. and Guan, X., 2012. Fractional order sliding mode controller design for antilock braking systems, Neurocomputing, 111, pp. 122-130.
https://doi.org/10.1016/j.neucom.2012.12.019.
10. Ullah, N., Shaoping, W., Khattak, M. I. and Shafi, M., 2015. Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and nonlinearities. Aerospace Science and Technology, 43, pp. 381-387.
https://doi.org/10.1016/j.ast.2015.03.020.
11. Ebrahimkhani, S., 2016. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines. ISA Transactions, 63, pp. 343-354. https://doi.org/10.1016/j.isatra.2016.03.003.
12. Kamali, M., Farhadi, M. and Askari J., 2017. Fractional order sliding mode controller design for quadrotor system. Modares Mechanical Engineering, 17 (5), pp. 287-294. ]In Persian[
13. Liu, S., Yan, B., Zhang, X., Liu, W. and Yan, J., 2022. Fractional-order sliding mode guidance law for intercepting hypersonic vehicles. Journal of Aerospace, 9 (2).
https://doi.org/10.3390/aerospace9020053
14. Ullah, N., Mehmood, Y., Aslam, J., Wang, S. and Phoungthong, Kh., 2022. Fractional order adaptive robust formation control of multiple quad-rotor UAVs with parametric uncertainties and wind disturbances. Chinese Journal of Aeronautics. 35 (8), pp. 204-220.
https://doi.org/10.1016/j.cja.2021.10.012.
15. Tavakoli, M. and Haeri, M., 2010. The minimal state space realization for a class of fractional order transfer functions. Society for Industrial and Applied Mathematics Journal on Control and Optimization, 48 (7), pp. 4317–4326.
https://doi.org/10.1137/090753048.
16. Tavakoli, M., Haeri, M. and Tavazoei, M. S., 2011. Notes on the state space realizations of rational order transfer functions. IEEE Transactions on Circuits and Systems, 58 (5), pp. 1099-1108.
https://doi.org/10.1109/TCSI.2010.2090568.
17. Tavazoei, M. S. and Tavakoli, M., 2013. Minimal realizations for some classes of fractional order transfer functions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3 (3), pp. 313-321. https://doi.org/10.1109/JETCAS.2013.2265798.