1. Song, G., 2007. Control of Biodegradation of Biocompatable Magnesium Alloys. Corrosion science, 49(4), pp. 1696-1701. https://doi.org/10.1016/j.corsci.2007.01.001.
2. Amani, S. and G. Faraji., 2019. Processing and properties of biodegradable magnesium microtubes for using as vascular stents: a brief review. Metals and Materials International, 25(5), pp. 1341-1359. https://doi.org/10.1007/s12540-019-00285-4
3. Chen, X., 2011. A theoretical and Experimental study on forming limit diagram for a seamed tube hydroforming. Journal of Materials Processing Technology, 211(12), pp. 2012-2021. https://doi.org/10.1016/j.jmatprotec.2011.06.023
4. Habibi, M., 2017. Determination of forming limit diagram using two modified finite element models. Mech Eng, 48(4), pp. 141-144. https://mej.aut.ac.ir/jufile?ar_sfile=78324
5. Hashemi, R., A. Assempour, and E.M.K. Abad., 2009.Implementation of the forming limit stress diagram to obtain suitable load path in tube hydroforming considering M–K model. Materials & Design, 30(9), pp. 3545-3553. https://doi.org/10.1016/j.matdes.2009.03.002
6. Assempour, A., H.K. Nejadkhaki, and R. Hashemi., 2010. Forming limit diagrams with the existence of through-thickness normal stress. Computational Materials Science, 48(3), pp. 504-508. https://doi.org/10.1016/j.commatsci.2010.02.013
7. Faraji, G., 2010. Hydroforming limits in metal bellows forming process. Materials and Manufacturing Processes, 25(12), pp. 1413-1417. https://doi.org/10.1080/10426914.2010.499579
8. Roberts, C.S., 1960. Magnesium and its Alloys., https://cir.nii.ac.jp/crid/1130282268932379520
9. Mostaed, E., 2015. Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy. Journal of Alloys and Compounds, 638, pp. 267-276. https://doi.org/10.1016/j.jallcom.2015.03.029
10. Lu, F., 2015. Enhanced mechanical properties and rolling formability of fine-grained Mg–Gd–Zn–Zr alloy produced by equal-channel angular pressing. Journal of Alloys and Compounds,643, pp. 28-33. https://doi.org/10.1016/j.jallcom.2015.04.118
11. Partridge, P., 1967. The crystallography and deformation modes of hexagonal close-packed metals. Metallurgical reviews, 12(1), pp. 169-194. https://doi.org/10.1179/mtlr.1967.12.1.169
12. Agnew, S., M. Yoo, and C. Tome., 2001. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta materialia. https://doi.org/10.1016/S1359-6454(01)00297-X
13. Muránsky, O., 2008. Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction and EPSC modelling. Materials Science and Engineering. https://doi.org/10.1016/j.msea.2008.07.031
14. Wang, H., 2016. Deformation behavior of Mg-8.5 wt.% Al alloy under reverse loading investigated by in-situ neutron diffraction and elastic viscoplastic self-consistent modeling. Acta Materialia, 107, pp. 404-414. https://doi.org/10.1016/j.actamat.2016.01.066
15. Roters, F., 2010. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta materialia, 58(4), pp. 1152-1211. https://doi.org/10.1016/j.actamat.2009.10.058
16. Choi, S.-H., D. Kim, H. Lee, and E. Shin., 2010. Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method. Materials Science and Engineering: A, 527(4-5), pp. 1151-1159. https://doi.org/10.1016/j.msea.2009.09.055
17. Mirzakhani, Amin, A. Pour, and Ahmad., 2021.Investigating the effect of texture intensity on the deformation behavior of extruded Mg-0.8 wt% Y alloy under tensile and compressive loading using crystal plasticity finite element method. Sharif Mechanical Engineering, 37(1), pp. 59-69.[In Persion]. https://doi.org/10.24200/j40.2021.56291.1559
18. Asaro, R.J., 1983. Micromechanics of crystals and polycrystals. Advances in applied mechanics, 23, p. 1-115. https://doi.org/10.1016/S0065-2156(08)70242-4
19. Roters, F., 2019. DAMASK – The Düsseldorf Advanced Material Simulation Kit for Modelling Multi-Physics Crystal Plasticity, Damage, and Thermal Phenomena from the Single Crystal up to the Component Scale. Computational Materials Science, 158, pp. 420-478. https://doi.org/10.1016/j.ijplas.2021.103078
20. Peirce, D., R.J. Asaro, and A. Needleman., 1983. Material rate dependence and localized deformation in crystalline solids. Acta metallurgica, 31(12), pp. 1951-1976. https://doi.org/10.1016/S0020-7683(01)00246-3
21. Li, W., 2019. Grain-scale deformation in a Mg− 0.8 wt% Y alloy using crystal plasticity finite element method. Journal of Materials Science & Technology, 35(10), pp. 2200-2206. https://doi.org/10.1016/j.jmst.2019.04.030
22. Roters, F., 2019. DAMASK–The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 158, pp. 420-478. https://doi.org/10.1016/j.commatsci.2018.04.030
23. Kalidindi, S.R., 1998. Incorporation of deformation twinning in crystal plasticity models. Journal of the Mechanics and Physics of Solids, 46(2), pp. 267-290. https://doi.org/10.1016/S0022-5096(97)00051-3
24. Zhou, R., A. Roy, and V.V. Silberschmidt., 2019. A crystal-plasticity model of extruded AM30 magnesium alloy. Computational Materials Science, 170, pp. 109140. https://doi.org/10.1016/j.commatsci.2019.109140
25. Wang, W., J. Liu, and A.K. Soh., 2019. Crystal plasticity modeling of strain rate and temperature sensitivities in magnesium. Acta Mechanica, 230(6), pp. 2071-2086. https://doi.org/10.1007/s00707-019-2374-9
26. Mirzakhani, A. and A. Assempour., 2022. The effects of microstructural parameters on the tension-compression mechanical behavior of extruded Mg-XY rods using crystal plasticity finite element modeling. Results in Engineering, pp. 100834. https://doi.org/10.1016/j.rineng.2022.100834
27. Afshar, A., 2017. Numerical and experimental study of bursting prediction in tube hydroforming of Al 7020-T6. Mechanics & Industry, 18(4), pp. 411. https://doi.org/10.1051/meca/2017019
28. Taabi, N., A. Mirzakhani, and A. Asimpour., 2022. Prediction of magnesium tube forming limit diagram using modeling of hydroforming process. Mechanical Engineering, Tabriz University, pp. [In Persion]. 10.22034/jmeut.2022.48874.3006
29. Lumelskyj, D., J. Rojek, L. Lazarescu, and D. Banabic., 2018. Determination of forming limit curve by finite element method simulations. Procedia Manufacturing, 2, pp. 78-82. https://doi.org/10.1016/j.promfg.2018.12.047