1. FUKANO, T. and JANG, C.-M., 2004. Tip clearance noise of axial flow fans operating at design and off-design condition. Journal of Sound and Vibration, 275, 1027-1050. https://doi.org/10.1016/S0022460X(03)00815-0.
2. KELLEY, N. D., MCKENNA, H., HEMPHILL, R., ETTER, C., GARRELTS, R. and LINN, N. 1985. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control. Solar Energy Research Inst., Golden, CO (USA).
3. DRATVA, J., PHULERIA, H. C., FORASTER, M., GASPOZ, J.-M., KEIDEL, D., KÜNZLI, N., LIU, L.-J. S., PONS, M., ZEMP, E. and GERBASE, M. W., 2012. Transportation noise and blood pressure in a population-based sample of adults. Environmental Health Perspectives, 120, 50-55. https://doi.org/10.1289/ehp.1103448
4. WAGNER, S., BAREIß, R. and GUIDATI, G., 1996. Noise mechanisms of wind turbines. Wind Turbine Noise. Springer.
5. OERLEMANS, S., SIJTSMA, P. and LÓPEZ, B. M., 2007. Location and quantification of noise sources on a wind turbine. Journal of Sound and Vibration, 299, 869-883. https://doi.org/10.1016/j.jsv.2006.07.032
6. WAGNER, S., BAREISS, R., and GUIDATI, G., 2012. Wind turbine noise. Springer Science & Business Media.
7. DAVARI, A., HASHEMINEJAD, M., and BOORBOOR, A., 2013. Shape optimization of wind turbine airfoils by genetic algorithm. International Journal of Engineering and Technology, 5, 206. https://doi.org/10.7763/IJET.2013.V5.543
8. RAM, K. R., LAL, S. and RAFIUDDIN AHMED, M., 2013. Low Reynolds number airfoil optimization for wind turbine applications using genetic algorithm. Journal of Renewable and Sustainable Energy, 5, 052007. https://doi.org/10.1063/1.4822037
9. SECCO, N. R. and DE MATTOS, B. S., 2017. Artificial neural networks to predict aerodynamic coefficients of transport airplanes. Aircraft Engineering and Aerospace Technology. https://doi.org/10.1108/AEAT-05-2014-0069
10. SUN, G., SUN, Y. and WANG, S., 2015. Artificial neural network based inverse design: Airfoils and wings. Aerospace Science and Technology, 42, 415-428. https://doi.org/10.1016/j.ast.2015.01.030
11. BEDON, G., DE BETTA, S. and BENINI, E., 2016. Performance-optimized airfoil for Darrieus wind turbines. Renewable Energy, 94, 328-340. https://doi.org/10.1016/j.renene.2016.03.071
12. CHEN, J., WANG, Q., ZHANG, S., EECEN, P. and GRASSO, F., 2016. A new direct design method of wind turbine airfoils and wind tunnel experiment. Applied Mathematical Modelling, 40, 2002-2014. https://doi.org/10.1016/j.apm.2015.09.051
13. ZHANG, T.-T., HUANG, W., WANG, Z.-G. and YAN, L., 2016. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method. Journal of Zhejiang University-SCIENCE A, 17, 632-645. http://orcid.org/0000-0001-9805-985X
14. TANDIS, E. and ASSAREH, E., 2017. Inverse design of airfoils via an intelligent hybrid optimization technique. Engineering with Computers, 33, 361-374. https://doi.org/10.1007/s00366-016-0478-6
15. BOUTEMEDJET, A., SAMARDŽIĆ, M., REBHI, L., RAJIĆ, Z. and MOUADA, T., 2019. UAV aerodynamic design involving genetic algorithm and artificial neural network for wing preliminary computation. Aerospace Science and Technology, 84, 464-483. https://doi.org/10.1016/j.ast.2018.09.043
16. YIN, R., XIE, J. B. and YAO, J., 2022. Optimal design and aerodynamic performance prediction of a horizontal axis small-scale wind turbine. Mathematical Problems in Engineering. https://doi.org/10.1155/2022/3947164
17. SONG, X., WANG, L. and LUO, X., 2022. Airfoil optimization using a machine learning-based optimization algorithm. 16th Asian International Conference on Fluid Machinery, AICFM 2021
Institute of Physics. https://doi.org/10.1088/17426596/2217/1/012009
18. ZHANG, X., ZHAO, L., LI, W., ZHANG, X. and BOCIAN, M., 2022. Optimal design for the blunt trailing-edge profile of wind turbine airfoils under glaze ice conditions. Journal of Engineering Mechanics, 148. https://doi.org/10.1061/(ASCE)EM.19437889.0002086
19. RODRIGUEZ, C. V. and CELIS, C., 2022. Design optimization methodology of small horizontal axis wind turbine blades using a hybrid CFD/BEM/GA approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44. http://dx.doi.org/10.1007/s40430-022-03561-4
20. XU, B., LI, Z., ZHU, Z., CAI, X., WANG, T. and ZHAO, Z., 2021. The parametric modeling and two-objective optimal design of a downwind blade. Frontiers in Energy Research, 9 . https://doi.org/10.3389/fenrg.2021.708230
21. SVORCAN, J., PEKOVIĆ, O., SIMONOVIĆ, A., TANOVIĆ, D. and HASAN, M. S., 2021. Design of optimal flow concentrator for vertical-axis wind turbines using computational fluid dynamics, artificial neural networks and genetic algorithm. Advances in Mechanical Engineering, 13. https://doi.org/10.1177/16878140211009009
22. ROUL, R. and KUMAR, A., 2021. Optimized design and performance testing of a 1.5 MW wind turbine blade. Springer Proceedings in Materials. Springer Nature.
23. PHOLDEE, N., BUREERAT, S. and NUANTONG, W., 2021. Kriging surrogate-based genetic algorithm optimization for blade design of a horizontal axis wind turbine. CMES - Computer Modeling in Engineering and Sciences, 126, 261-273. https://doi.org/10.32604/cmes.2021.012349
24. MASHUD, M., JOTY, S. M., and AHMED, Z. U., 2021. Optimization of low speed wind turbine blade profile on the basic of lift coeficient. ARPN Journal of Engineering and Applied Sciences, 16, 112-120.
25. CHEN, Y. Q. and FANG, Y. F., 2015. Research on improved method of wind turbine airfoil S834 based on noise and aerodynamic performance. Applied Mechanics and Materials, 744, 253-258. https://doi.org/10.4028/www.scientific.net/AMM.744-746.253.
26. BAKAR, A., LI, K., LIU, H., XU, Z., ALESSANDRINI, M. and WEN, D., 2022. Multi-objective optimization of low reynolds number airfoil
using convolutional neural network and non-dominated sorting genetic algorithm. Aerospace, 9, 35. https://doi.org/10.3390/aerospace9010035
27. LIU, R.-L., HUA, Y., ZHOU, Z.-F., LI, Y., WU, W.-T. and AUBRY, N., 2022. Prediction and optimization of airfoil aerodynamic performance using deep neural network coupled Bayesian method. Physics of Fluids, 34. https://doi.org/10.1063/5.0122595
28. MOSHTAGHZADEH, M. and ALIGOODARZ, M. R., 2022. Prediction of wind turbine airfoil performance using artificial neural network and CFD approaches. International Journal of Engineering & Technology Innovation, 12. https://doi.org/10.46604/ijeti.2022.9735
29. TYAN, M., CHOI, C.-K., NGUYEN, T. A. and LEE, J.-W., 2023. Rapid airfoil inverse design method with a deep neural network and hyperparameter selection. International Journal of Aeronautical and Space Sciences, 24, 33-46. https://doi.org/10.1007/s42405-022-00507-x
30. VOLKMER, K., KAUFMANN, N. and CAROLUS, T.H., 2021. Mitigation of the aerodynamic noise of small axial wind turbines-methods and experimental validation. Journal of Sound and Vibration, 500, p. 116027. https://doi.org/10.1016/j.jsv.2021.116027
31. GERHARD, T. and CAROLUS, T., 2014. Investigation of airfoil trailing edge noise with advanced experimental and numerical methods. The 21st International Congress on Sound and Vibration.
32. SOMERS, D. M., 2005. S833, S834, and S835 Airfoils: November 2001--November 2002. National Renewable Energy Lab.(NREL), Golden, CO (United States).
33. CEZE, M., HASHI, M. and VOLPE, E., 2009. A study of the cst parameterization characteristics. 27th AIAA Applied Aerodynamics Conference , p. 3767. https://doi.org/10.2514/6.2009-3767
34. Iranian national Standard, 1993. Acoustics-determination of sound power levels of noise sources- precision methods for anechoic and seemi-anechoic rooms. Iranian national Standard.
35. VOLKMER, K. and CAROLUS, T., 2018. Aeroacoustic airfoil shape optimization utilizing semi-empirical models for trailing edge noise prediction. AIAA/CEAS Aeroacoustics Conference, 3130. https://doi.org/10.2514/6.2018-3130