1. Shum, H. C., Rowat, A. C., Lee, D., Agresti, J. J., Utada, A. S., and Weitz, D. A. (2008). Designer emulsions using microfluidics. Materials Today, 11(4), 18–27. https://doi.org/10.1016/S1369-7021(08)70053-1
2. Maan, A. A., Schroën, K., and Boom, R. (2011). Spontaneous droplet formation techniques for monodisperse emulsions preparation – Perspectives for food applications. Journal of Food Engineering, 107(3–4), 334–346. https://doi.org/10.1016/J.JFOODENG.2011.07.008.
3. Umbanhowar, P. B., Prasad, V., and Weitz, D. A. (1999). Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream. Langmuir, 16(2), 347–351. https://doi.org/10.1021/LA990101E
4. Zhu, P., Tang, X., & Wang, L. (2016). Droplet generation in co-flow microfluidic channels with vibration. Microfluidics and Nanofluidics, 20(3), 1–10. https://doi.org/10.1007/S10404-016-1717-2/FIGURES/5
5. Dewandre, A., Rivero-Rodriguez, J., Vitry, Y., Sobac, B., and Scheid, B. (2020). Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. Scientific Reports 2020 10:1, 10(1), 1–17. https://doi.org/10.1038/s41598-020-77836-y
6. Erkal, J. L., Selimovic, A., Gross, B. C., Lockwood, S. Y., Walton, E. L., McNamara, S., Spence, D. M. (2014). 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab on a Chip, 14(12), 2023–2032. https://doi.org/10.1039/C4LC00171K
7. Venzac, B., Deng, S., Mahmoud, Z., Lenferink, A., Costa, A., Bray, F., and Le Gac, S. (2021). PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It? Analytical Chemistry, 93(19), 7180–7187. https://doi.org/10.1021/acs.analchem.0c04944
8. Vedhanayagam, A., Golfetto, M., Ram, J. L., and Basu, A. S. (2023). Rapid Micromolding of Sub-100 µm Microfluidic Channels Using an 8K Stereolithographic Resin 3D Printer. Micromachines, 14(8), 1519. https://doi.org/10.3390/MI14081519/S1
9. Wu, L., Qian, J., Liu, X., Wu, S., Yu, C., and Liu, X. (2023). Numerical Modelling for the Droplets Formation in Microfluidics - A Review. Microgravity Science and Technology 2023 35:3, 35(3), 1–21. https://doi.org/10.1007/S12217-023-10053-0
10. Hernández-Cid, D., Pérez-González, V. H., Gallo-Villanueva, R. C., González-Valdez, J., and Mata-Gómez, M. A. (2022). Modeling droplet formation in microfluidic flow-focusing devices using the two-phases level set method. Materials Today: Proceedings, 48, 30–40. https://doi.org/10.1016/J.MATPR.2020.09.417
11. Oveysi, M., Karim Khani, M. M., Bazargan, V., Nejat, A., and Marengo, M. (2024). Multiple emulsions: A new level-set based two-and-three dimensional simulation of multiphase immiscible flows for droplet formation. International Journal of Multiphase Flow, 170, 104645. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2023.104645
12. Yu, W., Liu, X., Zhao, Y., and Chen, Y. (2019). Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles. Chemical Engineering Science, 203, 259–284. https://doi.org/10.1016/J.CES.2019.03.082
13. Nabavi, S. A., Vladisavljević, G. T., Gu, S., and Ekanem, E. E. (2015). Double emulsion production in glass capillary microfluidic device: Parametric investigation of droplet generation behaviour. Chemical Engineering Science, 130, 183–196. https://doi.org/10.1016/J.CES.2015.03.004
14. Nabavi, S. A., Vladisavljević, G. T., Bandulasena, M. V., Arjmandi-Tash, O., and Manović, V. (2017). Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification. Journal of Colloid and Interface Science, 505, 315–324. https://doi.org/10.1016/J.JCIS.2017.05.115
15. Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
16. Raad, M., Rezazadeh, S., Jalili, H., and Abbasinezhad Fallah, D. (2021). A numerical study of droplet splitting in branched T-shaped microchannel using the two-phase level-set method. Advances in Mechanical Engineering, 13(11). https://doi.org/10.1177/16878140211045487/ASSET/IMAGES/LARGE/10.1177_16878140211045487-FIG17.JPEG
17. Pan, X., Wang, Y., and Shen, M. (2022). A conservative level set approach to non-spherical drop impact in three dimensions. Micromachines 2022, Vol. 13, Page 1850, 13(11), 1850. https://doi.org/10.3390/MI13111850
18. Hu, Q., Jiang, T., and Jiang, H. (2020). numerical simulation and experimental validation of liquid metal droplet formation in a co-flowing capillary microfluidic device. Micromachines 2020, Vol. 11, Page 169, 11(2), 169. https://doi.org/10.3390/MI11020169
19. M. J. Rosen, and J. T. Kunjappu. (2012). Surfactants and Interfacial Phenomena (4th ed.). Hoboken, New Jersey: John Wiley and Sons., 4, 33–34. Retrieved from https://doi.org/10.1002/9781118228920.
20. Hunger, Klaus. (2003). Industrial dyes : chemistry, properties, applications. Wiley-VCH.
https://doi.org/10.1002/3527602011.
21. Trinh, T. N. D., Do, H. D. K., Nam, N. N., Dan, T. T., Trinh, K. T. L., and Lee, N. Y. (2023). Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals 2023, Vol. 16, Page 937, 16(7), 937. https://doi.org/10.3390/PH16070937
22. Amirifar, L., Besanjideh, M., Nasiri, R., Shamloo, A., Nasrollahi, F., De Barros, N. R., and Khademhosseini, A. (2022). Droplet-based microfluidics in biomedical applications. Biofabrication, 14(2), 022001.
https://doi.org/10.1088/1758-5090/AC39A9