1. Mahmoudian, M., Filho, J., Melicio, R., Rodrigues, E., Ghanbari, M. and Gordo, P., 2023. Three-dimensional performance evaluation of hemispherical coriolis vibratory gyroscopes.
Micromachines,
14(2), 254.
https://doi.org/10.3390/mi14020254.
2. Remillieux, G. and Delhaye, F., 2014, Sagem coriolis vibrating gyros: A vision realized. In 2014 DGON Inertial Sensors and Systems (ISS), pp. 1-13. IEEE. https://doi.org/
10.1109/InertialSensors.2014.7049409.
3. Jia, J., Ding, X., Qin, Z., Ruan, Z., Li, W., Liu, X. and Li, H., 2021. Overview and analysis of MEMS Coriolis vibratory ring gyroscope.
Measurement,
182, 109704.
https://doi.org/10.1016/j.measurement.2021.109704.
4. Amal, A. and Davidson, R.A., 2021, March. Design and development of control electronics for coriolis vibratory gyroscopes. In
2021 IEEE Aerospace Conference, 1-10. IEEE. https://doi.org/
10.1109/AERO50100.2021.9438329.
5. Xiao, P., Qiu, Z., Pan, Y., Li, S., Qu, T., Tan, Z., Liu, J., Yang, K., Zhao, W., Luo, H. and Qin, S., 2020. Influence of electrostatic forces on the vibrational characteristics of resonators for coriolis vibratory gyroscopes.
Sensors,
20(1), 295.
https://doi.org/10.3390/s20010295.
6. Hou, B., Zhu, Y., He, C., Wang, W., Ding, Z., He, W., He, Y. and Che, L., 2024. A 3D-printed microhemispherical shell resonator with electrostatic tuning for a Coriolis vibratory gyroscope.
Microsystems & Nanoengineering,
10(1), 32.
https://doi.org/10.1038/s41378-024-00659-8.
8. Delahaye, L., Guérard, J. and Parrain, F., 2017, May. Coriolis Vibrating Gyroscope Modelling for parametric identification and optimal design.
In Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) 1-5. IEEE. https://doi.org/
10.1109/DTIP.2017.7984461.
9. Sung, W.T., Sung, S., Lee, J.G. and Kang, T., 2007. Design and performance test of a MEMS vibratory gyroscope with a novel AGC force rebalance control.
Journal of Micromechanics and Microengineering,
17(10), 1939.
https://doi.org/10.1088/0960-1317/17/10/003.
10. Vatanparvar, D. and Shkel, A.M., 2020, October. Instabilities due to electrostatic tuning of frequency-split in coriolis vibratory gyroscopes.
In2020 IEEE S (pp. 1-4). IEEE. https://doi.org/
1109/SENSORS47125.2020.9278845.
11. Liu, J.Y., 2024, March. Auxiliary Gyroscope Approach for Balanced Performance via Gyro Self-Calibration.
In 2024 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 1-4. https://doi.org/
10.1109/INERTIAL60399.2024.10502051.
12. Loper, E.J. and Lynch, D.D., 1983. Projected system performance based on recent HRG test results (low noise inertial rotation sensor). In Digital Avionics Systems Conference, 5 th, Seattle, WA, 18.
13. Lin, Z., Fu, M., Deng, Z., Liu, N. and Liu, H., 2015. Frequency split elimination method for a solid-state vibratory angular rate gyro with an imperfect axisymmetric-shell resonator.
Sensors,
15(2), pp. 3204-3223.
https://doi.org/10.3390/s150203204.
14. Ma, X. and Su, Z., 2015. Analysis and compensation of mass imperfection effects on 3-D sensitive structure of bell-shaped vibratory gyro.
Sensors and Actuators A: Physical, 224, pp. 14-23.
https://doi.org/10.1016/j.sna.2015.01.013.
15. Zeng, K., Hu, Y., Deng, G., Sun, X., Su, W., Lu, Y. and Duan, J.A., 2017. Investigation on eigenfrequency of a cylindrical shell resonator under resonator-top trimming methods.
Sensors,
17(9), 2011.
https://doi.org/10.3390/s17092011.
16. Xi, X., Wu, Y., Wu, X., Tao, Y. and Wu, X., 2012. Investigation on standing wave vibration of the imperfect resonant shell for cylindrical gyro.
Sensors and Actuators A: Physical,
179, pp.70-77.
https://doi.org/10.1016/j.sna.2012.03.031.
17. Ma, X. and Su, Z., 2015. Analysis and compensation of mass imperfection effects on 3-D sensitive structure of bell-shaped vibratory gyro.
Sensors and Actuators A: Physical,
224, pp.14-23.
https://doi.org/10.1016/j.sna.2015.01.013.