1. Chen, H., Chang, L., Jin, Y., Wang, C., Xu, H., Cai, Z. and Liu, H., 2024. Design and performance study of oscillating hydrofoil-wave energy conversion device.
Journal of Marine Science and Technology, pp.1-6.
https://doi.org/10.1007/s00773-024-01023-1
2. Zhang, Y., Han, X., Hu, Y., Chen, X., Li, Z., Gao, F. and Chen, W., 2024. Dual-function flapping hydrofoil: Energy capture and propulsion in ocean waves.
Renewable Energy, , p.119956.
https://doi.org/10.1016/j.renene.2024.119956
3. Qu, H., Li, X., Zheng, J., Dong, X., Liu, Z. and Han, Y., 2024. Numerical study on the energy-harvesting performance of a semi-activated coupled-pitching hydrofoil in shear flows.
Applied Ocean Research,
146,p.103968.
https://doi.org/10.1016/j.apor.2024.103968
4. Hasanvand, A., Savaedi, M., Hajivand, A. and Salemi, H.H., 2024. Harnessing tidal energy efficiency: A comprehensive analysis of tandem flapping hydrofoils for maximizing power generation from low-level currents.
Ocean Engineering,
310, p.118673.
https://doi.org/10.1016/j.oceaneng.2024.118673
6. Rehman, S., Alhems, L.M., Alam, M.M., Wang, L. and Toor, Z., 2023. A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost.
Ocean Engineering,
267,p.113192.
https://doi.org/10.1016/j.oceaneng.2022.113192
7. Balta, H. and Yumurtaci, Z., 2024. Investigation and Optimization of Integrated Electricity Generation from Wind, Wave, and Solar Energy Sources.
Energies,
17(3), p.603.
https://doi.org/10.3390/en17030603
8. Clemente, D., Rosa-Santos, P. and Taveira-Pinto, F., 2021. On the potential synergies and applications of wave energy converters: A review.
Renewable and Sustainable Energy Reviews,
135,p.110162.
https://doi.org/10.1016/j.rser.2020.110162
11. Czech, B. and Bauer, P., 2012. Wave energy converter concepts: Design challenges and classification. IEEE Industrial Electronics Magazine, 6(2), pp.4-16.
12. Gao, H. and Xiao, J., 2021. Effects of power take-off parameters and harvester shape on wave energy extraction and output of a hydraulic conversion system.
Applied Energy,
299, p.117278.
https://doi.org/10.1016/j.apenergy.2021.117278
13. Zhao, F., Qadri, M.M., Wang, Z. and Tang, H., 2021. Flow-energy harvesting using a fully passive flapping foil: A guideline on design and operation.
International Journal of Mechanical Sciences,
197,p.106323.
https://doi.org/10.1016/j.ijmecsci.2021.106323
14. Xiao, Q. and Zhu, Q., 2014. A review on flow energy harvesters based on flapping foils. Journal of Fluids and Structures, 46, pp.174-191.
15. Qadri, M.M., Zhao, F. and Tang, H., 2020. Fluid-structure interaction of a fully passive flapping foil for flow energy extraction.
International Journal of Mechanical Sciences, 177, p.105587.
https://doi.org/10.1016/j.ijmecsci.2020.105587
16. McKinney, W. and DeLaurier, J., 1981. The wingmill: an oscillating-wing wind-mill. Journal of Energy, 5, pp.109-115.
17. Jones, K.D., Davids, S.T. and Platzer, M.F., 1999. Oscillating-wing power generation. In Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, pp.18-23. New York, NY: American Society of Mechanical Engineers.
18. Davids, S.T., 1999. A computational and experimental investigation of a flutter generator. Doctoral dissertation, Monterey, California: Naval Postgraduate School.
20. Liao, J.C., Beal, D.N., Lauder, G.V. and Triantafyllou, M.S., 2003. Fish exploiting vortices decrease muscle activity. Science, 302, pp.1566-1569. https://doi.org/10.1126/science.1088295
21. Kinsey, T. and Dumas, G., 2007. Heaving amplitude effects on oscillating wing turbines. In Proceedings of the 15th Annual Conference of the CFD Society of Canada. Toronto, Canada, Paper CFD-2007-1068.
22. Kinsey, T. and Dumas, G., 2008. Parametric study of an oscillating airfoil in a power-extraction regime.
AIAA Journal,
46(6), pp.1318-1330.
https://doi.org/10.2514/1.26253
23. The Engineering Business Limited, 2002. Research and development of a 150 kW tidal stream generator. Tech. Rep. Crown Copyright.
26. Kloos, G., Gonzalez, C.A. and Finnigan, T.D., 2015. The bio-STREAM tidal current energy converter. Bio-Power Systems Pty Ltd.
28. Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M. and Tao, Z., 2012. Turbulence modeling of deep dynamic stall at relatively low Reynolds number.
Journal of Fluids and Structures,
33, pp.191-09.
https://doi.org/10.1016/j.jfluidstructs.2012.04.011
29. Geng, F., Kalkman, I., Suiker, A.S.J. and Blocken, B., 2018. Sensitivity analysis of airfoil aerodynamics during pitching motion at a Reynolds number of 1.35× 105.
Journal of Wind Engineering and Industrial Aerodynamics,
183, pp.315-32.
https://doi.org/10.1016/j.jweia.2018.11.009
30. Sitorus, P.E. and Ko, J.H., 2019. Power extraction performance of three types of flapping hydrofoils at a Reynolds number of 1.7× 106. Renewable Energy, 132, pp.106-118.
31. Farooq, H., Asghar, R., Ahmed, S., and Ahmed, F., 2024. Energy harvesting performance of bio-inspired oscillating hydrofoils in variable flow conditions.
Journal of Renewable and Sustainable Energy,
16(1), p.013701.
https://doi.org/10.1063/5.0123456.