Investigation of the Microstructure and Microhardness of Inconel 792 Superalloy After Laser Shock Peening

Document Type : Article

Authors

1 Faculty of Mechanical Engineering, University of Birjand, Birjand, Iran.

2 Faculty of Materials Engineering of Birjand University of Technology, Birjand, Iran.

3 Faculty of Physics of Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Abstract

The use of laser shock peening (LSP) as a novel surface treatment generates controlled compressive residual stresses in materials, thereby enhancing their service life, particularly in stress‑sensitive environments. In the present study, the effect of varying the laser beam diameter on the microstructure and microhardness of cast Inconel 792 superalloy subjected to LSP was investigated. X‑ray diffraction (XRD) analysis was employed to identify the phases and quantify the surface residual stresses, while optical microscopy was used to examine the microstructure and the phases formed after chemical etching. The results confirmed the presence of residual stresses within the dendritic microstructure of the γ and γ′ phases. LSP produced significant grain refinement near the surface, leading to a reduction in grain area by approximately 62 %. Meanwhile, the microhardness of the treated region increased by 30 % up to a depth of 2 mm, and the residual stress was transformed from tensile to compressive, reaching about 290 MPa. These findings demonstrate that laser shock peening can effectively induce high compressive residual stress and promote surface grain refinement in Inconel 792, resulting in improved mechanical properties and enhanced durability under demanding service conditions.

Keywords

Main Subjects


1. Kolagar, A.M., Tabrizi, N., Cheraghzadeh, M. and Shahriari, M.S., 2017. Failure analysis of gas turbine first stage blade made of nickel-based superalloy. Case Studies in Engineering Failure Analysis8, pp.61-68. https://doi.org/10.1016/j.csefa.2017.04.002
2. Wahl, J.B. and Harris, K., 1996. Superalloys in industrial gas turbines-an overview. In 9th World Conference on Investment Casting, October, San Francisco, CA USA. pp.13-16.
3. Ion, J., 2005. Laser processing of engineering materials: principles, procedure and industrial application. 1th Edn., Elsevier.
4. Brandal, G. and Lawrence Yao, Y., 2017. Material influence on mitigation of stress corrosion cracking via laser shock peening. J. of Manufacturing Science and Engineering139(1), p.011002.  https://doi.org/10.1115/1.4034283
5. Telang, A., Gill, A.S., Teysseyre, S., Mannava, S.R., Qian, D. and Vasudevan, V.K., 2015. Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution. Corrosion Science90, pp.434-444.     https://doi.org/10.1016/j.corsci.2014.10.045
6. Maleki, E., Unal, O., Guagliano, M. and Bagherifard, S., 2021. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718. Materials Science and Engineering: A, 810, p.141029. https://doi.org/10.1016/j.msea.2021.141029
7. Wang, C., Shen, X.J., An, Z.B., Zhou, L.C. and Chai, Y., 2016. Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy. Materials & Design89, pp.582-588. https://doi.org/10.1016/j.matdes.2015.10.022
8. Nath, S., Shukla, P., Shen, X. and Lawrence, J., 2018. Effect of laser shock peening (LSP) on the phase evolution, residual stress and hardness of Hastelloy-X superalloys. Lasers in Engineering39 (1-2), pp.97-112.
9. Kaufman, J., Špirit, Z., Vasudevan, V.K., Steiner, M.A., Mannava, S.R., Brajer, J., Pína, L. and Mocek, T., 2021. Effect of laser shock peening parameters on residual stresses and corrosion fatigue of AA5083. Metals11(10), p.1635.      https://doi.org/10.3390/met11101635
10. Kaufman, J., Racek, J., Cieslar, M., Minárik, P., Steiner, M.A., Mannava, S.R., Vasudevan, V.K., Sharma, A., Böhm, M., Brajer, J. and Pilař, J., 2022. The effect of laser shock peening with and without protective coating on intergranular corrosion of sensitized AA5083. Corrosion Science194, p.109925. https://doi.org/10.1016/j.corsci.2021.109925
11. Tong, Z., Ren, X., Ren, Y., Dai, F., Ye, Y., Zhou, W., Chen, L. and Ye, Z., 2018. Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy. Surface and Coatings Technology335, pp.32-40.      https://doi.org/10.1016/j.surfcoat.2017.12.003
12. Ning, C., Zhang, G., Yang, Y. and Zhang, W., 2018. Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy. Applied Optics57(10), pp.2467-2473.  https://doi.org/10.1364/AO.57.002467
13. Zhang, H., Jiang, Y., Liu, M., Zou, T., Wang, Q., Wu, H., Pei, Y., Liu, Y. and Wang, Q., 2024. The effect of laser shock peening with different power density on the microstructure evolution and mechanical properties of MAR-M247 nickel-base alloy. J. of Materials Research and Technology30, pp.3340-3354. https://doi.org/10.1016/j.jmrt.2024.04.107
14. Li, K., Yu, W., Li, Y., Bao, H., Cao, Y. and Wang, Y., 2024. Study on the effects of laser shock peening on the microstructure and properties of 17-7PH stainless steel. Frontiers in Materials11, p.1484698.      https://doi.org/10.3389/fmats.2024.1484698
15. Telang, A., Gill, A.S., Teysseyre, S., Mannava, S.R., Qian, D. and Vasudevan, V.K., 2015. Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution. Corrosion Science90, pp.434-444.      https://doi.org/10.1016/j.corsci.2014.10.045
16. Ignaczak, J. and Hetnarski, R.B., 2014. Generalized thermoelasticity: Mathematical formulation. Encyclopedia of Thermal Stresses7, pp.1974-1986.  https://doi.org/10.1080/014957399280832
17. Singh, N., Ahuja, K., Singh, T. and Singh, S.A., 2017. Review: Effect of laser peening treatment on properties and life cycle of different materials. IOSR J. of Mechanical and Civil Engineering14(1), pp.83-94.
18. Karthik, D. and Swaroop, S., 2017. Laser peening without coating—an advanced surface treatment: a review. Materials and Manufacturing Processes32(14), pp.1565-1572. https://doi.org/10.1080/10426914.2016.1221095
19. Prabhakaran, S. and Kalainathan, S., 2016. Warm laser shock peening without coating induced phase transformations and pinning effect on fatigue life of low-alloy steel. Materials & Design107, pp.98-107. https://doi.org/10.1016/j.matdes.2016.06.026
20. Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V. and Vignal, V., 2015. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy. Int. J. of Fatigue70, pp.480-489. https://doi.org/10.1016/j.ijfatigue.2014.05.015
21. Abbasi A, Amini S, Shikhzade G., 2017. Investigation of experimental and numerical simulation of residual stresses distribution of rolling mill rolls in ultrasonic peening technology. Modares Mechanical Engineering, 17 (7), pp. 316-324. [In Persian]. https://doi.org/20.1001.1.10275940.1396.17.7.52.4
22. Auld, J.H. and Greenough, G.B., 1954. Residual lattice strains in iron single crystals. Acta Metallurgica2(2), pp.209-213. https://doi.org/10.1016/0001-6160(54)90161-3
23. Cueto-Rodriguez, M.M., Avila-Davila, E.O., Lopez- Hirata, V.M., Saucedo-Muñoz, M.L., Palacios-Pineda, L.M., Trapaga-Martinez, L.G. and Alvarado-Orozco, J.M., 2018. Numerical and experimental analyses of the effect of heat treatments on the phase stability of Inconel 792. Advances in Materials Science and Engineering2018(1), p.4535732.      https://doi.org/10.1155/2018/4535732
24. Sedighi M., Nazemnezhad R., 2011, Analysis of the effect of diffraction peak positioning method on residual stress measurement, using the standard XRD technique. Aerospace Mechanics Journal, 7(2 (24)), pp.73-87. [In Persian].      httpssid.ir/paper/102035
25. Prevéy, P.S., 1986. X-ray diffraction residual stress techniques.
26. Hosooli S., 2020, A review of the application of X-ray diffraction in residual stress measurement, J. of Mechanical Engineering, 28(5), pp.25-30. [In Persian].  20.1001.1.16059719.1398.28.5.5.9
27. Karthik, D. and Swaroop, S., 2017. Laser shock peening enhanced corrosion properties in a nickel-based Inconel 600 superalloy. J. of Alloys and Compounds694, pp.1309-1319. https://doi.org/10.1016/j.jallcom.2016.10.093
28. Afsari Moghaddam, A. R., Brooghani, A., Yaghoubi Nejad, Y., Khanzadeh, M. 2024. Investigation of the simultaneous effect of laser shock peening and graphene oxide coating on residual stress and fatigue corrosion properties of IN792 alloy, J. of Solid and Fluid Mechanics, 14(5), pp. 121-136. [In Persian].  https://doi.org/10.22044/jsfm.2024.14595.3871
29. Samuel, C., Moganraj, A., Swaroop, S., Praveenkumar, K., Natarajan, A., Nageshwara Rao, M., Syed, B. and Bhattacharya, B., 2023. Effect of laser shock peening without coating on grain size and residual stress distribution in a microalloyed steel grade. Crystals13(2), p.212.  https://doi.org/10.3390/cryst13020212
30. Rozmus-Górnikowska, M., Kusiński, J., Cieniek, Ł. and Morgiel, J., 2021. The microstructure and properties of laser shock peened CMSX4 superalloy. Metallurgical and Materials Transactions A52, pp.2845-2858.      https://doi.org/10.1007/s11661-021-06277-7.
31. Lu, J.Z., Luo, K.Y., Zhang, Y.K., Sun, G.F., Gu, Y.Y., Zhou, J.Z., Ren, X.D., Zhang, X.C., Zhang, L.F., Chen, K.M., and Cui, C.Y., 2010. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel, Acta Materialia,58(16), pp. 5354-5362.  https://doi.org/10.1016/j.actamat.2010.06.010
32. Wang, C., Shen, X.J., An, Z.B., Zhou, L.C. and Chai, Y., 2016. Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy. Materials & Design89, pp.582-588. https://doi.org/10.1016/j.matdes.2015.10.022
33. Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C.M. and Jeong, S., 2024. Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics. Optics & Laser Technology171, p.110290. https://doi.org/10.1016/j.optlastec.2023.110290
34. Gong, Z., Zhang, T., Chen, Y., Lu, J., Ding, X., Zhang, S., Lan, M., Shen, Y. and Wang, S., 2024. Effect of laser shock peening on stress corrosion cracking of TC4/2A14 dissimilar metal friction stir welding joints.  of Materials Research and Technology, 30, pp.1716-1725. https://doi.org/10.1016/j.jmrt.2024.03.216
35. Hakeem, A.H., Morar, N.I., Dawson, K., Tatlock, G.J., Gibson, G.J. and Gray, S., 2024. Effects of surface hardening by laser shock peening and shot peening on a nickel-based single-crystal superalloy CMSX-4. Materials Research Express11(7), p.076527. https://doi.org/10.1088/2053-1591/ad6535
36. Mostafa, A.M., Hameed, M.F. and Obayya, S.S., 2019. Effect of laser shock peening on the hardness of AL-7075 alloy. Journal of King Saud University-Science31(4), pp.472-478. https://doi.org/10.1016/j.jksus.2017.07.012
37. Dai, F.Z., Lu, J.Z., Zhang, Y.K., Wen, D.P., Ren, X.D. and Zhou, J.Z., 2014. Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations. Applied surface science316, pp.477-483. https://doi.org/10.1016/j.apsusc.2014.07.166
38. Rozmus-Górnikowska, M., Kusiński, J. and Cieniek, Ł., 2020. Effect of laser shock peening on the microstructure and properties of the Inconel 625 surface layer. J. of Materials Engineering and Performance29, pp.1544-1549.      https://doi.org/10.1007/s11665-020-04667-3.
39. Sheng, J., Zhang, H., Hu, X. and Huang, S., 2020. Influence of laser peening on the high-temperature fatigue life and fracture of Inconel 718 nickel-based alloy. Theoretical and Applied Fracture Mechanics109, p.102757.      https://doi.org/10.1016/j.tafmec.2020.102757
40. Zhou, L., Long, C., He, W., Tian, L. and Jia, W., 2018. Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization. J. of Alloys and Compounds744, pp.156-164. https://doi.org/10.1016/j.jallcom.2018.01.070