1. Kolagar, A.M., Tabrizi, N., Cheraghzadeh, M. and Shahriari, M.S., 2017. Failure analysis of gas turbine first stage blade made of nickel-based superalloy.
Case Studies in Engineering Failure Analysis,
8, pp.61-68.
https://doi.org/10.1016/j.csefa.2017.04.002
2. Wahl, J.B. and Harris, K., 1996. Superalloys in industrial gas turbines-an overview. In 9th World Conference on Investment Casting, October, San Francisco, CA USA. pp.13-16.
3. Ion, J., 2005. Laser processing of engineering materials: principles, procedure and industrial application. 1th Edn., Elsevier.
4. Brandal, G. and Lawrence Yao, Y., 2017. Material influence on mitigation of stress corrosion cracking via laser shock peening.
J. of Manufacturing Science and Engineering,
139(1), p.011002.
https://doi.org/10.1115/1.4034283
5. Telang, A., Gill, A.S., Teysseyre, S., Mannava, S.R., Qian, D. and Vasudevan, V.K., 2015. Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution.
Corrosion Science,
90, pp.434-444.
https://doi.org/10.1016/j.corsci.2014.10.045
6. Maleki, E., Unal, O., Guagliano, M. and Bagherifard, S., 2021. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718.
Materials Science and Engineering: A, 810, p.141029.
https://doi.org/10.1016/j.msea.2021.141029
7. Wang, C., Shen, X.J., An, Z.B., Zhou, L.C. and Chai, Y., 2016. Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy.
Materials & Design,
89, pp.582-588.
https://doi.org/10.1016/j.matdes.2015.10.022
8. Nath, S., Shukla, P., Shen, X. and Lawrence, J., 2018. Effect of laser shock peening (LSP) on the phase evolution, residual stress and hardness of Hastelloy-X superalloys. Lasers in Engineering, 39 (1-2), pp.97-112.
9. Kaufman, J., Špirit, Z., Vasudevan, V.K., Steiner, M.A., Mannava, S.R., Brajer, J., Pína, L. and Mocek, T., 2021. Effect of laser shock peening parameters on residual stresses and corrosion fatigue of AA5083.
Metals,
11(10), p.1635.
https://doi.org/10.3390/met11101635
10. Kaufman, J., Racek, J., Cieslar, M., Minárik, P., Steiner, M.A., Mannava, S.R., Vasudevan, V.K., Sharma, A., Böhm, M., Brajer, J. and Pilař, J., 2022. The effect of laser shock peening with and without protective coating on intergranular corrosion of sensitized AA5083.
Corrosion Science,
194, p.109925.
https://doi.org/10.1016/j.corsci.2021.109925
11. Tong, Z., Ren, X., Ren, Y., Dai, F., Ye, Y., Zhou, W., Chen, L. and Ye, Z., 2018. Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy.
Surface and Coatings Technology,
335, pp.32-40.
https://doi.org/10.1016/j.surfcoat.2017.12.003
12. Ning, C., Zhang, G., Yang, Y. and Zhang, W., 2018. Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy.
Applied Optics,
57(10), pp.2467-2473.
https://doi.org/10.1364/AO.57.002467
13. Zhang, H., Jiang, Y., Liu, M., Zou, T., Wang, Q., Wu, H., Pei, Y., Liu, Y. and Wang, Q., 2024. The effect of laser shock peening with different power density on the microstructure evolution and mechanical properties of MAR-M247 nickel-base alloy.
J. of Materials Research and Technology,
30, pp.3340-3354.
https://doi.org/10.1016/j.jmrt.2024.04.107
14. Li, K., Yu, W., Li, Y., Bao, H., Cao, Y. and Wang, Y., 2024. Study on the effects of laser shock peening on the microstructure and properties of 17-7PH stainless steel.
Frontiers in Materials,
11, p.1484698.
https://doi.org/10.3389/fmats.2024.1484698
15. Telang, A., Gill, A.S., Teysseyre, S., Mannava, S.R., Qian, D. and Vasudevan, V.K., 2015. Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution.
Corrosion Science,
90, pp.434-444.
https://doi.org/10.1016/j.corsci.2014.10.045
17. Singh, N., Ahuja, K., Singh, T. and Singh, S.A., 2017. Review: Effect of laser peening treatment on properties and life cycle of different materials. IOSR J. of Mechanical and Civil Engineering, 14(1), pp.83-94.
19. Prabhakaran, S. and Kalainathan, S., 2016. Warm laser shock peening without coating induced phase transformations and pinning effect on fatigue life of low-alloy steel.
Materials & Design,
107, pp.98-107.
https://doi.org/10.1016/j.matdes.2016.06.026
20. Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V. and Vignal, V., 2015. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy.
Int. J. of Fatigue,
70, pp.480-489.
https://doi.org/10.1016/j.ijfatigue.2014.05.015
21. Abbasi A, Amini S, Shikhzade G., 2017. Investigation of experimental and numerical simulation of residual stresses distribution of rolling mill rolls in ultrasonic peening technology
. Modares Mechanical Engineering,
17 (7), pp. 316-324. [In Persian].
https://doi.org/20.1001.1.10275940.1396.17.7.52.4
23. Cueto-Rodriguez, M.M., Avila-Davila, E.O., Lopez- Hirata, V.M., Saucedo-Muñoz, M.L., Palacios-Pineda, L.M., Trapaga-Martinez, L.G. and Alvarado-Orozco, J.M., 2018. Numerical and experimental analyses of the effect of heat treatments on the phase stability of Inconel 792.
Advances in Materials Science and Engineering,
2018(1), p.4535732.
https://doi.org/10.1155/2018/4535732
24. Sedighi M., Nazemnezhad R., 2011, Analysis of the effect of diffraction peak positioning method on residual stress measurement, using the standard XRD technique. Aerospace Mechanics Journal, 7(2 (24)), pp.73-87. [In Persian]. httpssid.ir/paper/102035
25. Prevéy, P.S., 1986. X-ray diffraction residual stress techniques.
26. Hosooli S., 2020, A review of the application of X-ray diffraction in residual stress measurement,
J. of Mechanical Engineering,
28(5), pp.25-30. [In Persian].
20.1001.1.16059719.1398.28.5.5.9
28. Afsari Moghaddam, A. R., Brooghani, A., Yaghoubi Nejad, Y., Khanzadeh, M. 2024. Investigation of the simultaneous effect of laser shock peening and graphene oxide coating on residual stress and fatigue corrosion properties of IN792 alloy,
J. of Solid and Fluid Mechanics, 14(5), pp. 121-136. [In Persian].
https://doi.org/10.22044/jsfm.2024.14595.3871
29. Samuel, C., Moganraj, A., Swaroop, S., Praveenkumar, K., Natarajan, A., Nageshwara Rao, M., Syed, B. and Bhattacharya, B., 2023. Effect of laser shock peening without coating on grain size and residual stress distribution in a microalloyed steel grade.
Crystals,
13(2), p.212.
https://doi.org/10.3390/cryst13020212
30. Rozmus-Górnikowska, M., Kusiński, J., Cieniek, Ł. and Morgiel, J., 2021. The microstructure and properties of laser shock peened CMSX4 superalloy.
Metallurgical and Materials Transactions A,
52, pp.2845-2858.
https://doi.org/10.1007/s11661-021-06277-7.
31. Lu, J.Z., Luo, K.Y., Zhang, Y.K., Sun, G.F., Gu, Y.Y., Zhou, J.Z., Ren, X.D., Zhang, X.C., Zhang, L.F., Chen, K.M., and Cui, C.Y., 2010. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel,
Acta Materialia,58(16), pp. 5354-5362.
https://doi.org/10.1016/j.actamat.2010.06.010
32. Wang, C., Shen, X.J., An, Z.B., Zhou, L.C. and Chai, Y., 2016. Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy.
Materials & Design,
89, pp.582-588.
https://doi.org/10.1016/j.matdes.2015.10.022
33. Bae, S., Kim, Y., Jung, J., Shin, K., Suh, C.M. and Jeong, S., 2024. Effects of laser shock peening on Inconel 738LC to improve mechanical and fatigue characteristics.
Optics & Laser Technology,
171, p.110290.
https://doi.org/10.1016/j.optlastec.2023.110290
34. Gong, Z., Zhang, T., Chen, Y., Lu, J., Ding, X., Zhang, S., Lan, M., Shen, Y. and Wang, S., 2024. Effect of laser shock peening on stress corrosion cracking of TC4/2A14 dissimilar metal friction stir welding joints.
of Materials Research and Technology, 30, pp.1716-1725.
https://doi.org/10.1016/j.jmrt.2024.03.216
35. Hakeem, A.H., Morar, N.I., Dawson, K., Tatlock, G.J., Gibson, G.J. and Gray, S., 2024. Effects of surface hardening by laser shock peening and shot peening on a nickel-based single-crystal superalloy CMSX-4.
Materials Research Express,
11(7), p.076527.
https://doi.org/10.1088/2053-1591/ad6535
36. Mostafa, A.M., Hameed, M.F. and Obayya, S.S., 2019. Effect of laser shock peening on the hardness of AL-7075 alloy.
Journal of King Saud University-Science,
31(4), pp.472-478.
https://doi.org/10.1016/j.jksus.2017.07.012
37. Dai, F.Z., Lu, J.Z., Zhang, Y.K., Wen, D.P., Ren, X.D. and Zhou, J.Z., 2014. Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations.
Applied surface science,
316, pp.477-483.
https://doi.org/10.1016/j.apsusc.2014.07.166
38. Rozmus-Górnikowska, M., Kusiński, J. and Cieniek, Ł., 2020. Effect of laser shock peening on the microstructure and properties of the Inconel 625 surface layer.
J. of Materials Engineering and Performance,
29, pp.1544-1549.
https://doi.org/10.1007/s11665-020-04667-3.
39. Sheng, J., Zhang, H., Hu, X. and Huang, S., 2020. Influence of laser peening on the high-temperature fatigue life and fracture of Inconel 718 nickel-based alloy.
Theoretical and Applied Fracture Mechanics,
109, p.102757.
https://doi.org/10.1016/j.tafmec.2020.102757
40. Zhou, L., Long, C., He, W., Tian, L. and Jia, W., 2018. Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization.
J. of Alloys and Compounds,
744, pp.156-164.
https://doi.org/10.1016/j.jallcom.2018.01.070