1. Fathi, A., 2012. Blade optimum design of a selected stage in axial compressors bassed on stage matching and overall performance. PhD thesis, K.N. Toosi University of Technology, Tehran, Iran. [In Persian].
3. Yang, J., Hu, B., Tao, Y., and Li, J., 2022. A flexible method for geometric design of axial compressor blades. Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, 236(12), pp. 2420-2432.
https://doi.org/10.1177/09544100211063078
4. Yang, C., Wu, H., and Liang, Y., 2019. A novel three-dimensional inverse method for axial compressor blade surface design.
Arabian Journal for Science and Engineering, 44(12), pp. 10169-10179.
https://doi.org/10.1007/s13369-019-04083-3
6. Lei, F., Ju, Y., and Zhang, C., 2021. A rapid and automatic optimal design method for six-stage axial-flow industry compressor
. Journal of Thermal Science, 30(5), pp. 1658-1673.
https://doi.org/10.1007/s11630-021-1496-2
7. Silva, L., Grönstedt, T., Xisto, C., Whitacker, L., Bringhenti, C., and Lejon, M., 2024 "Analysis of blade aspect ratio’s influence on high-speed axial compressor performance.
Aerospace, 11(4),
https://doi.org/10.3390/aerospace11040276
8. Tao, C., Du, X., Ding, J., Luo, Y., and Wang, Z. 2021. Maximum thickness location selection of high subsonic axial compressor airfoils and its effect on aerodynamic performance.
Frontiers in Energy Research, 9, 791542.
https://doi.org/10.3389/fenrg.2021.791542
9. Sans, J., Resmini, M., Brouckaert, J. F., and Hiernaux, S. 2014. Numerical investigation of the solidity effect on linear compressor cascades. In Turbo Expo: Power for Land, Sea, and Air.
American Society of Mechanical Engineers.
https://doi.org/10.1115/GT2014-25532
11. Karrabi, H., Sajjadi, M., and Baghani, M. 2019. Effect of aging and manufacturing tolerances on multi-stage transonic axial compressor performance.
Energy Equipment and Systems, 7(2), pp. 133-147.
https://doi.org/10.22059/ees.2019.35846
12. Rannou, C., Dazin, A., Marty, J., Tanguy, G., Castillon, L., and Moubogha, J. 2022. Effect of the axial compressor tip clearance size: Performance and transition to rotating stall. In Turbo Expo: Power for Land, Sea, and Air.
American Society of Mechanical Engineers.
https://doi.org/10.1115/GT2022-80914
13. Gambini, M., and Vellini, M., 2020. Turbomachinery: fundamentals, selection and preliminary design. Springer Nature.
14. CFturbo., 2023 .CFturbo User Guide
16. Epple, Ph., Durst, F., and Delgado, A., 2011. A theoretical derivation of the Cordier diagram for turbomachines. Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, 225(2), pp. 354-368.
https://doi.org/10.1243/09544062JMES228
17. Wright, L. C., 1974. Blade selection for a modern axial-flow compressor. Fluid Mech., Acoustics, and Design of Turbomachinery, Pennsylvania State Univ.
20. Boyce, M.P., 2011. Gas turbine engineering handbook. Elsevier.
21. Aungier, R.H., 2003. Axial-flow compressors. American Society of Mechanical Engineers, New York.
22. Wilson, D.G., and Korakianitis, T., 2014. The design of high-efficiency turbomachinery and gas turbines, with a new preface. MIT press.