1. Ford, E.M. Hilderbrand, A.M. and Kloxin, A.M. 2024. Harnessing multifunctional collagen mimetic peptides to create bioinspired stimuli responsive hydrogels for controlled cell culture.
Journal of Materials Chemistry B,
12(38), pp. 9600-9621,
https://doi.org/10.1039/D4TB00562G
2. Kontomaris, S.V. Malamou, A. and Stylianou, A. 2024. A new method for AFM mechanical characterization of heterogeneous samples with finite thickness.
Journal of Mechanics,
40, pp.552-564,
https://doi.org/10.1093/jom/ufae047
3. Cao, D. Malakooti, S. Kulkarni, V.N. Ren, Y. and Lu, H. 2021. Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite.
Mechanics of Time-Dependent Materials,
25, pp.353-363,
https://doi.org/10.1007/s11043-020-09448-y
4. Arora, G. and Pathak, H. 2021. Nanoindentation characterization of polymer nanocomposites for elastic and viscoelastic properties: Experimental and mathematical approach.
Composites Part C: Open Access,
4, p.100103,
https://doi.org/10.1016/j.jcomc.2020.100103
5. Hunnicutt, W.A. Struble, L.J. and Mondal, P. 2024. Nanoindentation methods for viscoelastic characterization of stiff porous materials.
Experimental Mechanics,
64(8), pp.1357-1368.
https://doi.org/10.1007/s11340-024-01095-5
6. Idkaidek, A. Agarwal, V. Jasiuk, I. 2017. Finite element simulation of reference point indentation on bone.
Journal of the Mechanical Behavior of Biomedical Materials,
65, pp.574-83,
https://doi.org/10.1016/j.jmbbm.2016.08.031
8. Brinson, H.F. and Brinson, L.C. 2008. Polymer engineering science and viscoelasticity: An introduction, 2nd Edn. Springer, New York, USA.
10. Daphalapurkar, N.P. Dai, C. Gan, R.Z. Lu, H. 2009. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.
Journal of the Mechanical Behavior of Biomedical Materials,
2(1), pp.82-92,
https://doi.org/10.1016/j.jmbbm.2008.05.008
14. Oyen, M.L. Bushby, A.J. 2007. Viscoelastic effects in small-scale indentation of biological materials.
International Journal of Surface Science and Engineering,
1(2-3), pp.180-97,
https://doi.org/10.1504/IJSURFSE.2007.015024
16. Bembey, A. Oyen, M.L. Bushby, A. Boyde, A. 2006. Viscoelastic properties of bone as a function of hydration state determined by nanoindentation.
Philosophical Magazine,
86(33-35), pp.5691-703,
https://doi.org/10.1080/14786430600660864
20. Liu, K. VanLandingham, M.R. Ovaert, T.C. 2009. Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis.
Journal of the Mechanical Behavior of Biomedical Materials,
2(4), pp.355-63,
https://doi.org/10.1016/j.jmbbm.2008.12.001
21. Niestrawska, J.A. Viertler, C. Regitnig, P. Cohnert, T.U. Sommer, G. Holzapfel, G.A. 2016. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: Experimental analysis and modelling.
Journal of The Royal Society Interface,
13(124), p.20160620,
https://doi.org/10.1098/rsif.2016.0620
22. Ogden, R.W. 1997. Non-linear elastic deformations, Dover publications, New York, USA.
25. Qu, M. Deng, F. Kalkhoran, S.M. Gouldstone, A. Robisson, A. VanVliet, K.J. 2011. Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites.
Soft Matter,
7(3), pp.1066-77,
https://doi.org/10.1039/C0SM00645A