Characterization of the Linear Viscoelastic Properties of Materials by the Results of Nanoindentation Test

Document Type : Article

Authors

Department of Mechanical Engineering of Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

Abstract

In this paper, the linear viscoelastic properties of materials are calculated using results from the nanoindentation test. The generalized standard linear solid (GSLS) viscoelastic models describe the material behavior, with the mechanical properties (model parameters) obtained by minimizing the error between the GSLS response and the experimental results under the same loading conditions. Since the test data are in the force-displacement not the stress-strain form, obtaining the material properties is less straightforward than the conventional tests (e.g., the tensile test) and requires analytical solutions. Specifically, the Hertzian contact theory and its closed-form solution for spherical indentation into a semi-infinite medium are employed. We fit the experimental results to the closed-form solutions, with error minimized via the least squares. This leads to a non-linear, constrained, and non-convex optimization problem, necessitating robust global optimization strategies beyond conventional local methods. Considering these challenges, the model coefficients meaningful in the experiment time span are computed using a genetic algorithm (GA) suited for the optimization. Several examples demonstrate ability of the method to accurately characterize the viscoelastic responses from nanoindentation test results, showing up to 50% difference compared with the values reported in the open literature.

Keywords

Main Subjects


1. Ford, E.M. Hilderbrand, A.M. and Kloxin, A.M. 2024. Harnessing multifunctional collagen mimetic peptides to create bioinspired stimuli responsive hydrogels for controlled cell culture. Journal of Materials Chemistry B, 12(38), pp. 9600-9621, https://doi.org/10.1039/D4TB00562G
2. Kontomaris, S.V. Malamou, A. and Stylianou, A. 2024. A new method for AFM mechanical characterization of heterogeneous samples with finite thickness. Journal of Mechanics, 40, pp.552-564, https://doi.org/10.1093/jom/ufae047
3. Cao, D. Malakooti, S. Kulkarni, V.N. Ren, Y. and Lu, H. 2021. Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mechanics of Time-Dependent Materials, 25, pp.353-363, https://doi.org/10.1007/s11043-020-09448-y
4. Arora, G. and Pathak, H. 2021. Nanoindentation characterization of polymer nanocomposites for elastic and viscoelastic properties: Experimental and mathematical approach. Composites Part C: Open Access4, p.100103, https://doi.org/10.1016/j.jcomc.2020.100103
5. Hunnicutt, W.A. Struble, L.J. and Mondal, P. 2024. Nanoindentation methods for viscoelastic characterization of stiff porous materials. Experimental Mechanics, 64(8), pp.1357-1368. https://doi.org/10.1007/s11340-024-01095-5
6. Idkaidek, A. Agarwal, V. Jasiuk, I. 2017. Finite element simulation of reference point indentation on bone. Journal of the Mechanical Behavior of Biomedical  Materials, 65, pp.574-83, https://doi.org/10.1016/j.jmbbm.2016.08.031
7. Christöfl, P. Czibula, C. Berer, M. Oreski, G. Teichert, C. and Pinter, G. 2021. Comprehensive investigation of the viscoelastic properties of PMMA by nanoindentation. Polymer Testing93, p.106978, https://doi.org/10.1016/j.polymertesting.2020.106978
8. Brinson, H.F. and Brinson, L.C. 2008. Polymer engineering science and viscoelasticity: An introduction, 2nd Edn. Springer, New York, USA.
9. Dias, J.M. Ziebarth, N.M. 2013. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Experimental Eye Research, 115, pp.41-6, https://doi.org/10.1016/j.exer.2013.06.004
10. Daphalapurkar, N.P. Dai, C. Gan, R.Z. Lu, H. 2009. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), pp.82-92, https://doi.org/10.1016/j.jmbbm.2008.05.008
11. Oyen, M.L. 2013. Nanoindentation of biological and biomimetic materials. Experimental Techniques, 37(1), pp.73-87, https://doi.org/10.1111/j.1747-1567.2011.00716.x.
12. Oyen, M.L. Cook, R.F. 2009. A practical guide for analysis of nanoindentation data. Journal of the Mechanical Behavior of Biomedical Materials, 2(4), pp.396-407, https://doi.org/10.1016/j.jmbbm.2008.10.002
13. Chua, W.K. Oyen, M.L. 2009. Viscoelastic properties of membranes measured by spherical indentation. Cellular and Molecular Bioengineering, 2(1), pp.49-56, https://doi.org/10.1007/s12195-009-0049-7
14. Oyen, M.L. Bushby, A.J. 2007. Viscoelastic effects in small-scale indentation of biological materials. International Journal of Surface Science and Engineering, 1(2-3), pp.180-97, https://doi.org/10.1504/IJSURFSE.2007.015024
15. Huang, G. Lu, H. 2006. Measurement of Young’s relaxation modulus using nanoindentation. Mechanics of Time-Dependent Materials, 10(3), pp.229-43, https://doi.org/10.1007/s11043-006-9020-3
16. Bembey, A. Oyen, M.L. Bushby, A. Boyde, A. 2006. Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philosophical Magazine, 86(33-35), pp.5691-703, https://doi.org/10.1080/14786430600660864
17. Cheng, Y-T, Cheng, C-M, 2004. Scaling, dimensional analysis, and indentation measurements. Materials Science and Engineering: R: Reports, 44(4), pp.91-149, https://doi.org/10.1016/j.mser.2004.05.001
18. Lu, H. Wang, B. Ma J. Huang, G. Viswanathan, H. 2003. Measurement of creep compliance of solid polymers by nanoindentation. Mechanics of Time-Dependent Materials, 7(3), pp.189-207, https://doi.org/10.1023/B:MTDM.0000007217.07156.9b
19. Cheng, L. Xia, X. Scriven, L.E. Gerberich, W.W. 2005. Spherical-tip indentation of viscoelastic material. Mechanics of Materials, 37(1), pp.213-26, https://doi.org/10.1016/j.mechmat.2004.03.002
20. Liu, K. VanLandingham, M.R. Ovaert, T.C. 2009. Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2(4), pp.355-63, https://doi.org/10.1016/j.jmbbm.2008.12.001
21. Niestrawska, J.A. Viertler, C. Regitnig, P. Cohnert, T.U. Sommer, G. Holzapfel, G.A. 2016. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: Experimental analysis and modelling. Journal of  The Royal Society Interface, 13(124), p.20160620, https://doi.org/10.1098/rsif.2016.0620
22. Ogden, R.W. 1997. Non-linear elastic deformations, Dover publications, New York, USA.
23. Ogden, R.W. Saccomandi, G. Sgura, I. 2004. Fitting hyperelastic models to experimental data. Computational Mechanics, 34, pp.484-502, https://doi.org/10.1007/s00466-004-0593-y
24. Broitman, E. 2016. Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribology Letters, 65(1), p.23, https://doi.org/10.1007/s11249-016-0805-5
25. Qu, M. Deng, F. Kalkhoran, S.M. Gouldstone, A. Robisson, A. VanVliet, K.J. 2011. Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites. Soft Matter, 7(3), pp.1066-77, https://doi.org/10.1039/C0SM00645A
26. Lee, E.H. Radok J.R.M. 1960. The contact problem for viscoelastic bodies. Journal of Applied Mechanics, 27(3), pp.438-44, https://doi.org/10.1115/1.3644020
27. Hanaor, D.A. Gan, Y. Einav, I, 2015. Contact mechanics of fractal surfaces by spline assisted discretisation. International Journal of Solids and Structures, 59, pp.121-31, https://doi.org/10.1016/j.ijsolstr.2015.01.021
28. Oyen, M.L. 2005. Spherical indentation creep following ramp loading. Journal of Materials Research, 20(8), pp.2094-100, https://doi.org/10.1557/JMR.2005.0259