\شماره٪٪۱
Holman, J.P., 2008. {\it Heat Transfer (Si Units) Sie}. Tata McGraw-Hill
Education.
\شماره٪٪۲
Bergman, T.L. and et al., 2011. {\it Introduction to Heat Transfer}.
John Wiley \& Sons.
\شماره٪٪۳
Nie, J.H., Chen, Y. and Hsieh, H.T., 2009. Effects of a baffle
on separated convection flow adjacent to backward-facing step.
{\it International Journal of Thermal Sciences}, {\it 48}(3), pp.618-625.
https://doi.org/10.1016/j.ijthermalsci.2008.05.015.
\شماره٪٪۴
Mohammed, H., Alawi, O.A. and Wahid, M., 2015. Mixed convective
nanofluid flow in a channel having backward-facing step with
a baffle. {\it Powder Technology}, {\it 275}, pp.329-343.
https://doi.org/10.1016/j.powtec.2014.09.046.
\شماره٪٪۵
Daungthongsuk, W. and Wongwises, S., 2007. A critical review
of convective heat transfer of nanofluids. {\it Renewable and Sustainable
Energy
Reviews},
{\it 11}(5), pp.797-817. https://doi.org/10.1016/j.rser.2005.06.005.
\شماره٪٪۶
Wang, X.Q. and Mujumdar, A.S., 2007. Heat transfer characteristics
of nanofluids: A review. {\it International Journal of Thermal Sciences},
{\it 46}(1), pp.1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010.
\شماره٪٪۷
Mohammed, H.A. and et al., 2012. Buoyancy-assisted mixed convective
flow over backward-facing step in a vertical duct using nanofluids.
{\it Thermophysics and Aeromechanics}, {\it 19}(1), pp.33-52.
\شماره٪٪۸
Al-Aswadi, A. and et al., 2010. Laminar forced convection flow
over a backward facing step using nanofluids. {\it International Communications
in Heat and Mass Transfer}, {\it 37}(8), pp.950-957.
https://doi.org/10.1016/j.icheatmasstransfer.2010.06.007.
\شماره٪٪۹
Siavashi, M., Bahrami, H.R.T. and Aminian, E., 2018. Optimization
of heat transfer enhancement and pumping power of a heat exchanger
tube using nanofluid with gradient and multi-layered porous foams.
{\it Applied Thermal Engineering}, {\it 138}, pp.465-474.
https://doi.org/10.1016/j.applthermaleng.2018.04.066.
\شماره٪٪۱۰
Siavashi, M. and Iranmehr, S., 2019. Using sharp wedge-shaped
porous media in front and wake regions of external nanofluid
flow over a bundle of cylinders. {\it International Journal of Numerical
Methods for Heat} \&
{\it Fluid Flow}, https://doi.org/10.1108/HFF-10-2018-0575.
\شماره٪٪۱۱
Mohebbi, R. and Heidari, H., 2017. Lattice Boltzmann simulation
of fluid flow and heat transfer in a parallel-plate channel with
transverse rectangular cavities. {\it International Journal of Modern
Physics C}, {\it
28}(03), p.1750042. https://doi.org/10.1142/S0129183117500425.
\شماره٪٪۱۲
Mohebbi, R. and et al., 2018. Lattice Boltzmann method based
study of the heat transfer augmentation associated with Cu/water
nanofluid in a channel with surface mounted blocks. {\it International
Journal of Heat and Mass Transfer}, {\it 117}, pp.425-435.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.043.
\شماره٪٪۱۳
Mohebbi, R., Nazari, M. and Kayhani, M., 2016. Comparative
study of forced convection of a power-law fluid in a channel
with a built-in square cylinder. {\it Journal of Applied Mechanics
and Technical Physics}, {\it 57}(1), pp.55-68.
\شماره٪٪۱۴
Mohebbi, R. and Rashidi, M., 2017. Numerical simulation of
natural convection heat transfer of a nanofluid in an L-shaped
enclosure with a heating obstacle. {\it Journal of the Taiwan Institute
of Chemical Engineers}, {\it 72}, pp.70-84.
https://doi.org/10.1016/j.jtice.2017.01.006.
\شماره٪٪۱۵
Nazari, M., Kayhani, M. and Mohebbi, R., 2013. Heat transfer
enhancement in a channel partially filled with a porous block:
Lattice Boltzmann method. {\it International Journal of Modern Physics
C}, {\it 24}(09), p.1350060. https://doi.org/10.1142/S0129183113500605.
\شماره٪٪۱۶
Yadav, V. and et al., 2016. Numerical investigation of heat
transfer in extended surface microchannels. {\it International Journal
of Heat and Mass Transfer}, {\it 93}, pp.612-622.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.023.
\شماره٪٪۱۷
Alamyane, A.A. and Mohamad, A.A., 2010. Simulation of forced
convection in a channel with extended surfaces by the Lattice
Boltzmann method. {\it Computers} \& {\it Mathematics with Applications},
{\it 59}(7), pp.2421-2430. https://doi.org/10.1016/j.camwa.2009.08.070.
\شماره٪٪۱۸
Peterson, G. and Ortega, A., 1990. Thermal control of electronic
equipment and devices. {\it In Advances In Heat Transfer, Elsevier},
pp.181-314. https://doi.org/10.1016/S0065-2717(08)70028-5.
\شماره٪٪۱۹
Incropera, F.P., 1988. Convection heat transfer in electronic
equipment cooling. {\it J. Heat Transfer}, {\it 110}(4b), pp.1097-1111.
https://doi.org/10.1115/1.3250613.
\شماره٪٪۲۰
Kefayati, G.R., 2015. FDLBM simulation of magnetic field
effect on mixed convection in a two sided lid-driven cavity filled
with non-Newtonian nanofluid. {\it Powder Technology}, {\it 280}, pp.135-153.
https://doi.org/10.1016/j.powtec.2015.04.057.
\شماره٪٪۲۱
Pirouz, M.M. and et al., 2011. Lattice Boltzmann simulation
of conjugate heat transfer in a rectangular channel with wall-mounted
obstacles. {\it Scientia Iranica}, {\it 18}(2), pp.213-221.
https://doi.org/10.1016/j.scient.2011.03.016.
\شماره٪٪۲۲
Biswas, S. and et al., 2015. Analysis of mixed convective
heat transfer in a ribbed channel using the Lattice Boltzmann
method. {\it Numerical Heat Transfer, Part A: Applications}, {\it 68}(1),
pp.75-98. https://doi.org/10.1080/10407782.2014.965095.
\شماره٪٪۲۳
Kefayati, G.R., 2014. Mixed convection of non-newtonian nanofluids
flows in a lid-driven enclosure with sinusoidal temperature profile
using FDLBM. {\it Powder Technology}, {\it 266}, pp.268-281.
https://doi.org/10.1016/j.powtec.2014.06.040.
\شماره٪٪۲۴
Afifah, A., Syahrullail, S. and Sidik, N.C., 2015. Natural
convection of alumina-distilled water nanofluid in cylindrical
enclosure: An experimental study. {\it Journal of Advanced Research
in Fluid Mechanics and Thermal Sciences}, {\it 12}(1), pp.1-10.
\شماره٪٪۲۵
Izadi, M., Behzadmehr, A. and Shahmardan, M., 2015. Effects
of inclination angle on laminar mixed convection of a nanofluid
flowing through an annulus. {\it Chemical Engineering Communications},
{\it 202}(12), pp.1693-702. https://doi.org/10.1080/00986445.2014.910770.
\شماره٪٪۲۶
Beg, O.A. and et al., 2014. Comparative numerical study of
single-phase and two-phase models for bio-nanofluid transport
phenomena. {\it Journal of Mechanics in Medicine and Biology}, {\it 14}(01),
p.1450011. http://dx.doi.org/10.1142/S0219519414500110.
\شماره٪٪۲۷
Rashidi, M. and et al., 2014. Comparative numerical study
of single and two-phase models of nanofluid heat transfer in
wavy channel. {\it Applied Mathematics and Mechanics}, {\it
35}(7), pp.831-848.
\شماره٪٪۲۸
Yang, Y.T. and Lai, F.H., 2011. Numerical study of flow
and heat transfer characteristics of alumina-water nanofluids
in a microchannel using the lattice Boltzmann method. {\it International
Communications in Heat and Mass Transfer}, {\it 38}(5), pp.607-614.
https://doi.org/10.1016/j.icheatmasstransfer.2011.03.010.
\شماره٪٪۲۹
Sidik, N.A.C. and et al., 2013. Simulation of forced convection
in a channel with nanofluid by the Lattice Boltzmann method.
{\it Nanoscale Research Letters}, {\it 8}(1), pp.1-8.
https://doi.org/10.1186/1556-276x-8-178.
\شماره٪٪۳۰
Demartini, L.C., Vielmo, H.A. and M\"{o}ller, S.,
2004. Numeric
and experimental analysis of the turbulent flow through a channel
with baffle plates. {\it Journal of the Brazilian Society of Mechanical
Sciences and Engineering}, {\it 26}(2), pp.153-159.
http://dx.doi.org/10.1590/S1678-58782004000200006.
\شماره٪٪۳۱
Mokhtari, M. and et al., 2017. Numerical study of mixed convection
heat transfer of various fin arrangements in a horizontal channel.
{\it Engineering Science and Technology, an International Journal},
{\it 20}(3), pp.1106-1114. https://doi.org/10.1016/j.jestch.2016.12.007.
\شماره٪٪۳۲
Siddiqui, M.K., 2007. Heat transfer augmentation in a heat
exchanger tube using a baffle. {\it International Journal of Heat
and Fluid Flow}, {\it 28}(2), pp.318-328.
https://doi.org/10.1016/j.ijheatfluidflow.2006.03.020.
\شماره٪٪۳۳
Mellal, M. and et al., 2017. Hydro-thermal shell-side performance
evaluation of a shell and tube heat exchanger under different
baffle arrangement and orientation. {\it International Journal of
Thermal Sciences}, {\it 121}, pp.138-149.
https://doi.org/10.1016/j.ijthermalsci.2017.07.011.
\شماره٪٪۳۴
Dutta, P. and Hossain, A., 2005. Internal cooling augmentation
in rectangular channel using two inclined baffles. {\it International
Journal of Heat and fluid flow}, {\it 26}(2), pp.223-232.
https://doi.org/10.1016/j.ijheatfluidflow.2004.08.001.
\شماره٪٪۳۵
Guerroudj, N. and Kahalerras, H., 2010. Mixed convection in
a channel provided with heated porous blocks of various shapes.
{\it Energy Conversion and Management}, {\it 51}(3), pp.505-517.
https://doi.org/10.1016/j.enconman.2009.10.015.
\شماره٪٪۳۶
Berner, C., Durst, F. and DaM McEligot., 1984. Flow around
baffles. {\it J. Heat Transfer}, {\it 106}(4), pp.743-749.
https://doi.org/10.1115/1.3246747.
\شماره٪٪۳۷
Habib, M. A. and et al., 1994. Experimental investigation
of heat transfer and flow over baffles of different heights.
{\it J. Heat
Transfer}, {\it 116}(2), pp.363-368. https://doi.org/10.1115/1.2911408.
\شماره٪٪۳۸
Cao, X. and et al., 2021. Performance investigation and multi-objective
optimization of helical baffle heat exchangers based on thermodynamic
and economic analyses. {\it International Journal of Heat and Mass
Transfer}, {\it 176}, p.121489.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121489.
\شماره٪٪۳۹
de Andr\'{e}s
Honrubia, J.L. and et al., 2021. Development and
application of a multi-objective tool for thermal design of heat
exchangers using neural networks. {\it Mathematics}, {\it 9}(10), p.1120.
http://dx.doi.org/10.3390/math9101120.
\شماره٪٪۴۰
Kaya, I. and Ust, Y., 2021. A new method to multi-objective
optimization of shell and tube heat exchanger for waste heat
recovery. Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects, pp.1-18.
\شماره٪٪۴۱
Saijal, K.K. and Danish, T., 2021. Design optimization of
a shell and tube heat exchanger with staggered baffles using
neural network and genetic algorithm. {\it Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science}, {\it 235}(22), pp.5931-5946.
\شماره٪٪۴۲
Chen, J. and et al., 2021. Experimental investigation of shell-side
performance and optimal design of shell-and-tube heat exchanger
with different flower baffles. {\it Heat Transfer Engineering}, {\it 42}(7),
pp.613-626. https://doi.org/10.1080/01457632.2020.1716485.
\شماره٪٪۴۳
Thondiyil, D. and Kodakkattu, S.K., 2021. Optimization of
a shell and tube heat exchanger with staggered baffles using
Taguchi method. {\it Materials Today: Proceedings}, {\it 46} pp.9983-9988.
https://doi.org/10.1016/j.matpr.2021.04.092.
\شماره٪٪۴۴
Aslan, E., Taymaz, I. and Islamoglu, Y., 2016. Finite volume
simulation for convective heat transfer in wavy channels. {\it Heat
and Mass Transfer}, {\it 52}(3), pp.483-497.
https://doi.org/10.1007/s00231-015-1571-x.
\شماره٪٪۴۵
Versteeg, H.K. and Malalasekera, W., 2007. An introduction
to computational fluid dynamics: The finite volume method. Pearson
Education.
\شماره٪٪۴۶
Ansys, I., 2013. Fluent theory guide. ANSYS Inc, USA [(accessed
on 27 March 2020)].
\شماره٪٪۴۷
Abolpour, B. and et al., 2017. Simulation of in-flight reduction
of the fine iron ore concentrate by hydrogen. {\it Chemical Product
and Process Modeling}, {\it 12}(1). https://doi.org/10.1515/cppm-2016-0021.
\شماره٪٪۴۸
Vajjha, R.S. and Das, D.K. 2009. Experimental determination
of thermal conductivity of three nanofluids and development of
new correlations. {\it International Journal of Heat and Mass Transfer},
{\it 52}(21.22), pp.4675-4682.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027.
\شماره٪٪۴۹
Hwang, C.L. and Masud, A.S.M., 2012. Multiple objective decision
making-methods and applications: A state-of-the-art survey.
{\it Springer Science} \& {\it Business Media}, {\it 164}.
\شماره٪٪۵۰
Deb, K., 2011. {\it Multi-Objective Optimisation Using Evolutionary
Algorithms: An Introduction}. In Multi-Objective Evolutionary
Optimisation For Product Design and Manufacturing. Springer.
pp.3-34.
\شماره٪٪۵۱
Srinivas, N. and Deb, K., 1994. Muiltiobjective optimization
using nondominated sorting in genetic algorithms. {\it Evolutionary
Computation},
{\it 2}(3), pp.221-248. https://doi.org/10.1162/evco.1994.2.3.221.
\شماره٪٪۵۲
Miettinen, K., 2012. {\it Nonlinear Multiobjective Optimization}.
Springer Science \& Business Media, Vol. 12.
\شماره٪٪۵۳
Hassanzadeh, H.R. and Rouhani. M., 2010. A multi-objective
gravitational search algorithm. {\it In 2010 2nd International Conference
on Computational Intelligence, Communication Systems and Networks}.
IEEE.
\شماره٪٪۵۴
Mohebbi, R. and et al., 2018. Forced convection of nanofluids
in an extended surfaces channel using lattice Boltzmann method.
{\it International Journal of Heat and Mass Transfer}, {\it 117}, pp.1291-1303.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.063.