1. Salehi, H. and Hormozi, F., 2018. Numerical study of silica-water based nanofluid nucleate pool boiling by two-phase Eulerian scheme, Heat and Mass Transfer, 54, pp. 773-784. https://doi.org/10.1007/s00231-017-2146-9
2. Li, X., Li, K., Tu, J. and Buongiorno, J., 2014. On two-fluid modeling of nucleate boiling of dilute nanofluids. International Journal of Heat and Mass Transfer, 69, pp.443-450.
3. Li, X., Yuan, Y. and Tu, J., 2015. A theoretical model for nucleate boiling of nanofluids considering the nanoparticle Brownian motion in liquid microlayer. International Journal of Heat and Mass Transfer, 91, pp.467-476.
4. Li, X., Yuan, Y. and Tu, J., 2015. A parametric study of the heat flux partitioning model for nucleate boiling of nanofluids. International Journal of Thermal Sciences, 98, pp.42-50.
5. Hu, Y., Liu, Z. and He, Y., 2018. Effects of SiO2 nanoparticles on pool boiling heat transfer characteristics of water based nanofluids in a cylindrical vessel. Powder Technology, 327, pp.79-88.
6. Rostamian, F. and Etesami, N., 2018. Pool boiling characteristics of silica/water nanofluid and variation of heater surface roughness in domain of time. International Communications in Heat and Mass Transfer, 95, pp.98-105.
7. Aizzat, M., Sulaiman, M., Enoki, K. and Okawa, T., 2019. Heat transfer coefficient of nucleate boiling in low concentration level of single and hybrid Al2O3-SiO2 water-based nanofluids. In: IOP Conference Series: Materials Science and Engineering, 469(1), p.012109. IOP Publishing.
https://doi.org/10.1088/1757-899X/469/1/012109
8. Akbari, A., Alavi Fazel, S.A., Maghsoodi, S. and Kootenaei, A.S., 2019. Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids. Journal of Thermal Analysis and Calorimetry, 135(1), pp.697-711. https://doi.org/10.1007/s10973-018-7182-2
9. Sarafraz, M., Pourmehran, O., Yang, B., Arjomandi, M. and Ellahi, R., 2020. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. International Journal of Thermal Sciences,147,p.106131. https://doi.org/10.1016/j.ijthermalsci.2019.11.030
10. Modi, M., Kangude, P. and Srivastava, A., 2020. Performance evaluation of alumina nanofluids and
nanoparticles-deposited surface on nucleate pool boiling phenomena. International Journal of Heat and Mass Transfer,146,p.118833. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118833
11. Golkar, S.H., Khayat, Zareh, M., 2021. Nucleate and film boiling performance of ethanol-based nanofluids on horizontal flat plate: an experimental investigation. International Journal of Thermophysics, 42(4), pp.1-28. https://doi.org/10.1007/s10765-021-02805-0
12. Gupta, R.R., Bhambi, S. and Agarwal, V., 2019. CFD modeling for nucleate pool boiling of nanofluids. Numerical Heat Transfer, Part A: Applications, 75(6), pp.402-412. [Online]. https://doi.org/10.1080/10407782.2019.1591863
13. Gobinath, N., Venugopal, T., Palani, K. and Samuel, A.A., 2018. Numerical modelling of thermophoresis in water-alumina nanofluid under pool boiling conditions. International Journal of Thermal Sciences, 129, pp.1-13. https://doi.org/10.1016/j.ijthermalsci.2018.02.025
14. Mao, S.-F., Ji, W.-T., Chong, G.-H., Zhao, C.-Y., Zhang, H. and Tao, W.-Q., 2019. Numerical investigation on the nucleate pool boiling heat transfer of R134a outside the plain tube. Numerical Heat Transfer, Part A: Applications, 76(11),pp.889-908. https://doi.org/10.1080/02626667.2018.1560449
15. Kamel, M.S., Al-agha, M.S., Lezsovits, F. and Mahian, O., 2020. Simulation of pool boiling of nanofluids by using Eulerian multiphase model. Journal of Thermal Analysis and Calorimetry,142,pp.493-505. https://doi.org/10.1007/s10973-019-09180-x
16. Alimoradi, H., Zaboli, S. and Shams, M., 2022. Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid. Korean Journal of Chemical Engineering, 39(1), pp.69-85.
https://doi.org/10.1007/s11814-021-0895-0
17. Zaboli, S., Alimoradi, H. and Shams, M., 2022. Numerical investigation on improvement in pool boiling heat transfer characteristics using different nanofluid concentrations. Journal of Thermal Analysis and Calorimetry, 147(19), pp.10659-10676. https://doi.org/10.1007/s10973-022-11272-0
18. Majdi, H.S., Hussein, H.M.A., Habeeb, L.J. and Zivkovic, D., 2022. Pool boiling simulation of two nanofluids at multi concentrations in enclosure with different shapes of fins. Materials Today: Proceedings, 60, pp.2043-2063.
19. Kamel, M.S., Albdoor, A.K., Nghaimesh, S.J. and Houshi, M.N., 2022. Numerical Study on Pool Boiling of Hybrid Nanofluids Using RPI Model. Fluids,7(6),p.187. https://doi.org/10.3390/fluids7060187
20. Braz Filho, F.A., Fortes, M.A. and Ribeiro, G.B., 2023. Comparison of interfacial heat transfer correlations for high-pressure subcooled boiling flows via CFD two-fluid model. International Journal of Heat and Mass Transfer, 166, p.121051.
21. Chen, Y.M. and Mayinger, F., 1992. Measurement of heat transfer at the phase interface of condensing bubbles. International Journal of Multiphase Flow, 18(6), pp.877-89. https://doi.org/10.1016/0301-9322(92)90007-7
22. Mortezazadeh, R., Aminfar, H. and Mohammadpourfard, M., 2017. Eulerian–Eulerian simulation of non-uniform magnetic field effects on the ferrofluid nucleate pool boiling. Journal of Engineering Thermophysics, 26,pp.580-597. https://doi.org/10.1134/S1810232817040129
23. Hamilton, R.L. and Crosser, O.K., 1962. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1, pp.187-191. https://doi.org/10.1021/i160003a005
24. Brinkman, H.C., 1952. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20(4), p.571. https://doi.org/10.1063/1.1700493
25. Sobamowo, M. G., Alozie, S. I., Yinusa, A. A., Adedibu, A. O., Salami, M. O. and Kehinde, O., 2019. Numerical Investigations of Effects of Lorentz Force and Hydrodynamic Slip on the Flow Characteristics of an Upper-Convected Maxwell Viscoelastic Nanofluid in a Permeable Channel Embedded in a Porous Medium. International Journal of Thermal Energy and Applications, 1(2), 28-41.
26. Haynes, W. M. (Ed.)., 2014. CRC handbook of chemistry and physics. CRC press.
27. Chinnam, J., Das, D., Vajjha, R. and Satti, J., 2015. Measurements of the contact angle of nanofluids and development of a new correlation. International Communications in Heat and Mass Transfer, 62, pp.1-12. https://doi.org/10.1016/j.icheatmasstransfer.2015.02.01
28. Ham, J. and Cho, H., 2016. Theoretical analysis of pool boiling characteristics of Al2O3 nanofluid according to volume concentration and nanoparticle size. Applied
Thermal Engineering,108,pp.158-171. https://doi.org/10.1016/j.applthermaleng.2016.07.032
29. Zhang, F. and Jacobi, A.M., 2016. Aluminum surface wettability changes by pool boiling of nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, pp.438-444
30. Schiller, L. and Naumann, Z.Z., 1935. Ver. Deutsch. Ing., 77, pp.318-321.
31. Tomiyama, A., 1998. Struggle with computational bubble dynamics. In: Third International Conference on Multiphase Flow, 8-12 June 1998, Lyon, France.
32. Frank, Th., Shi, J.M. and Burns, A.D., 2004. Validation of Eulerian Multiphase Flow Models for Nuclear Safety Applications. Third International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, September 22-24.
33. Antal, S.P., Lahey, R.T. and Flaherty, J.E., 1991. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow, 17, pp. 635-652.
https://doi.org/10.1016/0301-9322(91)90039-4
34. Lopez de Bertodano, M., 1991. Turbulent Bubbly Flow in a Triangular Duct. Ph.D. Thesis. Rensselaer Polytechnic Institute, Troy, New York.
35. Kocamustafaogullari, G., Huang, W. and Razi, J., 1994. Measurement and modeling of average void fraction, bubble size and interfacial area. Nuclear Engineering and Design, 148, pp. 437-453.
https://doi.org/10.1016/0029-5493(94)90012-4
36. Cole, R., 1960. A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal, 6(4), pp. 533-53. [Online]. https://doi.org/10.1002/aic.690060409.
37. Lemmert, M. and Chawla, J., 1977. Influence of flow velocity on surface boiling heat transfer coefficient. Heat Transfer in Boiling, pp. 237-247.
38. Li, X., Li, K., Tu, J. and Buongiorno, J., 2014. On two-fluid modeling of nucleate boiling of dilute nanofluids. International Journal of Heat and Mass Transfer, 69, pp. 443-450. [Online]. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.038
39. Del Valle, V.H. and Kenning, D., 1985. Subcooled flow boiling at high heat flux. International Journal of Heat and Mass Transfer,28(10),pp.1907-1920. https://doi.org/10.1016/0017-9310(85)90003-9.