بررسی پایداری استحکام تسلیم اتصال جوشی همزنی اصطکاکی پلاستیک گرمانرم آمورف مشابه با استفاده از عملگرهای میانگین وزنی مرتب شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پردیس صنعتی شهدای هویزه، دانشگاه شهید چمران اهواز

2 دانشکده ی علوم پایه، دانشگاه بزرگمهر قائنات

10.24200/j40.2024.64665.1709

چکیده

در این تحقیق، بررسی استحکام تسلیم اتصال جوشی پلاستیک گرمانرم آکریلونیتریل بوتادین استایرن انجام شده است. جوشکاری ورق‌ها با استفاده از ابزارهای فولادی و دستگاه فرز صورت گرفته و پین ابزار دارای پروفیل‌های استوانه‌ای و مخروطی می‌باشد. به‌دلیل گرمای تولیدی از اصطکاک و تغییر شکل شدید ناشی از جوشکاری همزنی اصطکاکی، اتصال جوشی به حالت ذوبی تبدیل می‌شود. نتایج آزمون کشش استاندارد، به‌روش میانگین وزنی مرتب شده، مورد بررسی قرار گرفته به‌طوری‌که علاوه بر مطالعه بهبود اتصال جوشی و تعیین مقادیر بهینه پارامترهای ورودی می‌توان پایداری رفتار پاسخ را نیز به‌دست آورد. از روش ارزیابی ریسک مبتنی بر وزن‌دهی به مقادیر مرتب شده ورودی به‌ازای یک مقدار مشخص خوش‌بینی، استفاده شده و نتایج پایداری پاسخ استحکامی به صورت کمی و کیفی ارائه شده‌اند. این بررسی، اهمیت صنعتی‌سازی و تولیدی استحکام اتصال را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the stability of the yield strength of the friction stir welding joint of similar amorphous thermoplastic based on the Ordered Weighted Averaging operators

نویسندگان [English]

  • N. Sadeghian 1
  • A.R. Chaji 2
1 Assistant Prof., Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Assistant Prof., Faculty of Basic Sciences, Bozorgmehr University of Qaenat, Qaen, Iran.
چکیده [English]

This paper presents an investigation of the yield strength of welded ABS thermoplastics. Welding is carried out using a steel tool mounted on a milling machine. The pin of the tools consists of cylindrical and conical profiles. Due to frictional heat and severe displacement, fusion weld occurs. Welding experimentation was designed by using the DoE theorem and welded in a universal milling machine. Significant factors of the welding process and their levels were obtained during pretests, and then weld runs were carried out successfully. Each weld bead was divided into three zones, and sampling was taken from them. The tensile strength of the welded joint is considered as a response to the process. ASTM D638 for plastics tensile test method sample preparation defined and type IV test coupons cut and installed on tensile test machine. Results were taken through standard tensile tests and analyzed using the ordered weighting average technique. Besides studying the improvement of the joint and determining optimal conditions of input parameters of the welding process, one could evaluate the stability of the response. For this purpose, an analytical approach to risk assessment is employed, which is based on the weighting of ordered input variables. The obtained results are presented in both qualitative and quantitative graphs. The Focus is on the quality of stability of response followed by workability and acceptance of the process as an industrialization method. In the current article, attention to high orness and the goal of stabilizing the maximum yield strength of the joint is achieved by selecting high levels of the aspect ratio of diameters and linear velocities with medium levels of rotational speed as well as low levels of the tilt angle of the tool. Conical tools lead to the most stable joint with a 10% variation on the weld line (for run #20) and the most strengthened one with an 18% variation on the weld line (for run #30) with 80% and 100% efficiency compared to the base material, respectively.

کلیدواژه‌ها [English]

  • Mechanical Behavior
  • Experimentation
  • Riskability
  • Friction Stir Welding (FSW)
  • Ordered Weighted Averaging (OWA)
1. Pereira, A., Fernandes, F., de Morais, A. and Quintão, J., 2019. Mechanical strength of thermoplastic polyamide welded by nd:yag laser. Polymers ,11 (9). https://doi.org/10.3390/polym11091381. 2. Hopmann, C., Bölle, S. and Reithmayr, L., 2020. Prediction of the bond strength of thermoplastics welded by laser transmission welding. Advances in Polymer Processing, pp. 247-257. https://doi.org/10.1007/978-3-662-60809-8_20. 3. Bastos, L., Alves, M., Sousa, B., Vilela, A., Rietter, L., Duarte, F., Carneiro, F. and Żmijewska-Rocha, F., 2023. Transmission laser welding of thermoplastics: influence of welding parameters and rib dimensions on the strength of welded joints. Journal of Advanced Joining Processes, 8 (100173). https://doi.org/10.1016/j.jajp.2023.100173 . 4. Liu, S. L., Lin, W. F., Chang, B. C., Wu, G. M. and Hung, S. W., 1999. Optimizing the joint strength of ultrasonically welded thermoplastics. Advances in Polymer Technology, 18 (2), pp. 125-135. https://doi.org/10.1002/(SICI)1098-2329(199922)18:2<125::AID-ADV3>3.0.CO;2-A. 5. Mendes, N., Loureiro, A., Martins, C., Neto, P. and Pires, J. N., 2014. Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Materials and Design, 58, pp. 457-464. https://doi.org/10.1016/j.matdes.2014.02.036. 6. Mendes, N., Loureiro, A., Martins, C., Neto, P. and Pires, J. N., 2014. Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Materials and Design, 64, pp. 81-90. https://doi.org/10.1016/j.matdes.2014.07.047. 7. Raza, S. F., Khan, S. A. and Mughal, M. P., 2019. Optimizing the weld factors affecting ultrasonic welding of thermoplastics. The International Journal of Advanced Manufacturing Technology, 103, pp. 2053-2076. https://doi.org/10.1007/s00170-019-03681-7. 8. Sadeghian, N. and Givi, M. K. B., 2015. Experimental optimization of the mechanical properties of friction stir welded acrylonitrile butadiene styrene sheets. Materials and Design, 67, pp. 145-153. https://doi.org/10.1016/j.matdes.2014.11.03. 9. Yager, R. R., 1988. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics,18 (1), pp. 183-190. 10.1109/21.87068. 10. Yager, R. R., 2009. Weighted Maximum Entropy owa aggregation with applications to decision making under risk. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 39 (3), pp. 555-564. 10.1109/TSMCA.2009.2014535. 11. Hussain, W., Raza, M. R., Jan, M. A., Merigó, J. M. and Gao, H., 2022. Cloud risk management with owa-lstm and fuzzy linguistic decision making. IEEE Transactions on Fuzzy Systems, 30(11), pp. 4657 – 4666. https://doi.org/10.1109/TFUZZ.2022.3157951. 12. Flores-Sosa, M., Avilés-Ochoa, E., Merigó, J. M. and Kacprz, J., 2022. The owa operator in multiple linear regression. Applied Soft Computing, 124, p. 108985. https://doi.org/10.1016/j.asoc.2022.108985. 13. D'Urso, P., Chachi, J., Kazemifard, A. and Giovanni, L. D., 2024. Owa-based multi-criteria decision making based on fuzzy methods. Annals of Operations Research. https://doi.org/10.1007/s10479-024-05926-5. 14. Alcantud, J. C. R., Santos-García, G. and Akram, M., 2022. Owa aggregation operators and multi-agent decisions with n-soft sets. Expert Systems With Applications, 203, p. 117430. https://doi.org/10.1016/j.eswa.2022.117430. 15. Mishra, R. S., De, P. S. and Kumar, N., 2014. Friction stir processing. In: Friction Stir Welding and Processing. Switzerland: Springer Cham, p. 259–296. https://doi.org/10.1007/978-3-319-07043-8_9 . 16. D'Urso, P. and Leski, J. M., 2023. Owa-based robust fuzzy clustering of time series with typicality degrees. Information Sciences, 651. https://doi.org/10.1016/j.ins.2023.119706. 17. Chachi, J. and Chaji, A., 2021. Employing weighted operators in ordered least deviations regression model. Journal of Statistical Sciences, 15(1), pp. 39-60 http://dx.doi.org/10.52547/jss.15.1.3. [In Persian]. 18. Chachi, J. and Chaji, A., 2021. An owa-based approach to quantile fuzzy regression. Computers and Industrial Engineering, 159. https://doi.org/10.1016/j.cie.2021.107498. 19. O'Hagan, M., 1988. Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic. Twenty-Second Asilomar Conference on Signals, Systems and Computers, 2, pp. 681-689. https://doi.org/10.1109/ACSSC.1988.754637.