تحلیل عددی و تجربی رشد آسیب ناهمسانگرد و تغییر فاز مارتنزیتی ناشی از کرنش پلاستیک در دمای محیط

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مکانیک برق و کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشکده مهندسی مکانیک، دانشگاه تهران

10.24200/j40.2024.65124.1720

چکیده

در این پژوهش به رشد آسیب ناهمسانگرد و تغییر فاز مارتنزیت، برای فولاد 316 در دمای محیط پرداخته شده‌ است. آزمون‌های کشش و پیچش بر روی قطعات انجام گرفته و تحت آزمون پراش پرتو ایکس، فازهای موجود در قطعه و کسر حجمی مارتنزیت تعیین شده ‌است. مدل عددی با اجرای کد یومت در نرم‌افزار آباکوس پیاده شده ‌است. در این تحقیق به صورت تجربی فرآیند رشد آسیب، و تبدیل فار را برای فولاد ۳۱۶ بررسی شده‌است. نوآوری این مدل، ترکیب همزمان رشد آسیب ناهمسانگرد و تبدیل فاز آستنیت به مارتنزیت در دمای محیط بوده‌است. مدل آسیبی که در این مقاله استفاده شده، مدل لومتر بوده و برای بدست آوردن آسیب در ابعاد مختلف از آزمون‌های تجربی شامل آزمون پیچش و کشش استفاده شده‌است. این آزمون‌ها به صورت بارگذاری و باربرداری بوده ‌است. نمونه‌ها تحت آزمون پراش پرتو ایکس قرار گرفته تا به‌کمک آن مقدار فاز مارتنزیت در ماده مشخص گردد. در نهایت با مقایسه شبیه‌سازی عددی با نتایج تجربی برای فولاد ۳۱۶، مدل کالیبره شده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical and experimental analysis of anisotropic damage growth and martensitic phase change due to plastic strain at ambient temperature

نویسندگان [English]

  • R. Barkhordari 1
  • M. Ganjiani 2
  • Sh. Etemadi Haghighi 1
1 Ph.D Student Faculty of Mechanics Electronics and Computers, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Associate Prof., Faculty of Mechanical Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

This study investigates the anisotropic damage growth and martensitic phase transformation in AISI-316 austenitic stainless steel at room temperature. Initially, tensile and torsion tests were performed on samples at various displacements. Following these tests, the samples were analyzed using X-ray diffraction (XRD) to identify the present phases and determine the martensite volume fraction. The experimental data obtained were then used to develop a numerical model implemented in Abaqus software using the UMAT code. The simulation covers two main aspects: martensitic phase transformation and anisotropic damage growth, with the code capable of predicting both phenomena at room temperature. Damage mechanics is a relatively new tool in mechanical engineering, complementing the theories of plasticity and fracture mechanics. This study experimentally examined the process of damage growth and phase transformation in 316 stainless steel. The innovation of this model lies in its simultaneous consideration of anisotropic damage growth and austenite-to-martensite phase transformation at room temperature. The damage model used in this study is the Limiter model. Experimental tests, including tensile and torsion tests, were conducted to assess damage in different dimensions, involving both loading and unloading conditions. The model by Shin and colleagues was utilized to determine the phases present in the material. For greater accuracy in phase transformation testing, the samples were prepared using a water jet and then subjected to X-ray diffraction to measure the extent of martensite phase development. Finally, the numerical simulation was calibrated against experimental results for 316 stainless steel, ensuring the model's accuracy. Austenitic stainless steels transform into the martensite phase under strain, where the unstable austenite phase converts into stable martensite due to plastic deformation. This martensitic phase transformation hardens the austenitic steels. This study examines the anisotropic damage growth resulting from plastic strain and the martensitic phase transformation in austenitic stainless steels, specifically AISI-316, at room temperature. Initially, tensile and torsion tests are conducted on the samples at various displacements. Subsequently, these samples undergo X-ray diffraction tests to determine the existing phases and the martensite volume fraction in the samples. Using the obtained results, an empirical model is created from numerical tests using the UMAT code in Abaqus software. This simulation includes both the martensitic phase transformation and anisotropic damage growth. The code can predict any phenomenon under environmental conditions. Finally, the effectiveness of the proposed model is compared and analyzed against experimental results for AISI-316 steel.

کلیدواژه‌ها [English]

  • Anisotropic damage
  • X-ray diffraction tests
  • Transformation phase
  • Numerical analysis
1. MURAKAMI, S. 2012. Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, Springer Science and Business Media. https://doi.org/https://doi.org/10.1016/S0020-7683(03)00109-4.- 2. LEE, C.-S., YOO, B.-M., KIM, M.-H. and LEE, J.-M. 2013. Viscoplastic damage model for austenitic stainless steel and its application to the crack propagation problem at cryogenic temperatures. International Journal of Damage Mechanics, 22, 95-115. https://doi.org/10.1177/1056789511434816. 3. RYŚ, M. 2015. Modeling of damage evolution and martensitic transformation in austenitic steel at cryogenic temperature. Archive of Mechanical Engineering, 523-537. http://dx.doi.org/10.1515%2Fmeceng-2015-0029. 4. GARION, C. and SKOCZEN, B. 2002. Modeling of plastic strain-induced martensitic transformation for cryogenic applications. J. Appl. Mech., 69, 755-762. https://doi.org/10.1115/1.1509485. 5. OLSON, G.and COHEN, M. 1975. Kinetics of strain-induced martensitic nucleation. Metallurgical transactions A, 6, 791-795. https://doi.org/10.1007/BF02672301. 6. MORI, T. and TANAKA, K. 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3. 7. IWAMOTO, T., TSUTA, T. and TOMITA, Y. 1998. Investigation on deformation mode dependence of strain-induced martensitic transformation in trip steels and modelling of transformation kinetics. International Journal of Mechanical Sciences, 40, 173-182. https://doi.org/10.1016/S0020-7403(97)00047-7. 8. GARION, C. and SKOCZEN, B. 2003. Combined model of strain-induced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures. International Journal of Damage Mechanics, 12, 331-356. https://doi.org/10.1177/105678903036225. 9. EGNER, H. and SKOCZEŃ, B. 2010. Ductile damage development in two-phase metallic materials applied at cryogenic temperatures. International Journal of Plasticity, 26, 488-506. https://doi.org/10.1016/j.ijplas.2009.08.006. 10. ORTWEIN, R., SKOCZEŃ, B. and TOCK, J. P. 2014. Micromechanics based constitutive modeling of martensitic transformation in metastable materials subjected to torsion at cryogenic temperatures. International Journal of Plasticity, 59, 152-179. https://doi.org/10.1016/j.ijplas.2014.03.006. 11. ORTWEIN, R., RYŚ, M. and SKOCZEŃ, B. 2016. Damage evolution in a stainless steel bar undergoing phase transformation under torsion at cryogenic temperatures.. International Journal of Plasticity, 59, 152-179 .https://doi.org/10.1177/1056789516656746. 12. LEMAITRE, J. and DUFAILLY, J. 1987. Damage measurements. Engineering Fracture Mechanics, 28, 643-661. https://doi.org/10.1016/0013-7944(87)90059-2. 13. EGNER, H. and RYŚ, M. 2017. Total energy equivalence in constitutive modeling of multidissipative materials. International Journal of Damage Mechanics, 26, 417-446. https://doi.org/10.1177/1056789516679496. 14. SAANOUNI, K. and DEVALAN, P. 2012. Thermomechanically‐Consistent Modeling of the Metals Behavior with Ductile Damage. Damage Mechanics in Metal Forming, 63-242. https://doi.org/10.1002/9781118562192.ch2. 15. AL-RUB, R. K. A. and VOYIADJIS, G. Z. 2003. On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures, 40, 2611-2643. https://doi.org/10.1016/S0020-7683(03)00109-4. 16. HOMAYOUNFARD, M., GANJIANI, M. and SASANI, F. 2021. Damage development during the strain induced phase transformation of austenitic stainless steels at low temperatures. Modelling and Simulation in Materials Science and Engineering, 29, 045004. https://doi.org/10.1088/1361-651X/abea67. 17. KAZEMI, S. S., HOMAYOUNFARD, M., GANJIANI, M. and SOLTANI, N. 2019. Numerical and experimental analysis of damage evolution and martensitic transformation in AISI 304 austenitic stainless steel at cryogenic temperature. International Journal of Applied Mechanics, 11, 1950012. https://doi.org/10.1142/S1758825119500121. 18. KOTHARI, M., NIU, S. and SRIVASTAVA, V. 2019. A thermo-mechanically coupled finite strain model for phase-transitioning austenitic steels in ambient to cryogenic temperature range. Journal of the Mechanics and Physics of Solids, 133, 103729. https://doi.org/10.1016/j.jmps.2019.103729. 19. NALEPKA, K., SKOCZEŃ, B., CIEPIELOWSKA, M., SCHMIDT, R., TABIN, J., SCHMIDT, E., ZWOLIŃSKA-FARYJ, W. and CHULIST, R. 2020. Phase transformation in 316L austenitic steel induced by fracture at cryogenic temperatures: Experiment and modelling. Materials, 14, 127. https://doi.org/10.3390/ma14010127. 20. TRINH, T. D. and IWAMOTO, T. 2021. A crystal plasticity simulation on strain-induced martensitic transformation in crystalline TRIP steel by coupling with cellular automata. Metals, 11, 1316. https://doi.org/10.3390/met11081316. 21. BEMFICA, C. and CASTRO, F. 2021. A cyclic plasticity model for secondary hardening due to strain-induced martensitic transformation. International Journal of Plasticity, 140, 102969. https://doi.org/10.1016/j.ijplas.2021.102969. 22. DING, H., WU, Y., LU, Q., WANG, Y., ZHENG, J. and XU, P. 2019. A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures. Cryogenics, 101, 89-100. https://doi.org/10.1016/j.cryogenics.2019.06.003. 23. LUO, C., ZENG, W., SUN, J. and YUAN, H. 2020. Plasticity modeling for a metastable austenitic stainless steel with strain-induced martensitic transformation under cyclic loading conditions. Materials Science and Engineering: A, 775, 138961. https://doi.org/10.1016/j.msea.2020.138961. 24. ZENG, W. and YUAN, H. 2017. Mechanical behavior and fatigue performance of austenitic stainless steel under consideration of martensitic phase transformation. Materials Science and Engineering: A, 679, 249-257. https://doi.org/10.1016/j.msea.2016.10.005. 25. SHIN, H. C., HA, T. K. and CHANG, Y. W. 2001. Kinetics of deformation induced martensitic transformation in a 304 stainless steel. Scripta Materialia, 45, 823-829. https://doi.org/10.1016/S1359-6462(01)01101-0. 26. LEMAITRE, J. 1985. A continuous damage mechanics model for ductile fracture. https://doi.org/10.1115/1.3225775. 27. GANJIANI, M. 2018. A Nonlinear Damage Model of Hardening-Softening Materials. Journal of Engineering Materials and Technology, 140, 011010. https://doi.org/10.1115/1.4037656. 28. REED, H. 1983. Martensitic transformations in fe-cr-ni stainless steels. Austenitic Steels at Low Temperatures. Springer. https://doi.org/10.1007/978-1-4613-3730-0. 29. LEBEDEV, A. and KOSARCHUK, V. 2000. Influence of phase transformations on the mechanical properties of austenitic stainless steels. International Journal of Plasticity, 16, 749-767. https://doi.org/10.1016/S0749-6419(99)00085-6 30. ASTM, I. 2010. ASTM E8/E8M-standard test methods for tension testing of metallic materials. Annu B ASTM Stand, 4, 1-27. 31. NAGHIZADEH, M. and MIRZADEH, H. 2016. Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metallurgical and Materials Transactions A, 47, 4210-4216. https://doi.org/10.1007/s11661-016-3589-1.