مطالعه ی عددی تأثیر کنترل جریان به شیوه ی عملگر پلاسما در عملکرد آیرودینامیکی یک توربین باد محور عمودی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده‌ی مهندسی مکانیک، گروه هوافضا، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

با افزایش ظرفیت انرژی باد و رشد تقاضای انرژی، به‌کارگیری روش‌های کنترل جریان برای بهبود عملکرد توربین‌های بادی ضرورت یافته است. در مطالعه‌ی حاضر، تأثیر محرک پلاسما به‌عنوان روش کنترل جریان فعال در عملکرد آئرودینامیکی توربین بادی محور عمودی داریوس به‌صورت عددی بررسی شده است. معادله‌های ناپایای ناویراستوکس در چارچوب حجم محدود و مدل فشار مبنا حل شده‌اند. ابتدا، فیزیک جریان و گشتاورهای آئرودینامیکی پیش از اعمال پلاسما تحلیل شده‌اند. سپس سه موقعیت طولی 25/0، 5/0، و 75/0 وتر برای نصب محرک پلاسما در نظر گرفته شده‌‌اند. برای پیاده‌سازی عملگر پلاسما با استفاده از مدل شای، رفتار دینامیکی عملگر به‌‌صورت یک تابع معین در کد عددی توصیف شده است. نتایج نشان داده است که موقعیت 25/0 وتر برای اعمال پلاسما، از بین انتخاب‌های دیگر مؤثرتر بوده و سبب بهبود ضریب توان توربین تا حدود 20٪ شده است. همچنین، بر مبنای الگوی جریان می‌توان دریافت که اعمال پلاسما با کاهش آثار واماندگی دینامیکی و با افزایش زاویه‌ی رخداد واماندگی، ضمن به تأخیرافتادن پدیده‌ی اخیر، با حذف گردابه‌های ناخواسته، موجب بهبود پروفیل نیرو و گشتاور آئرودینامیکی و درنهایت، سبب افزایش توان خروجی توربین شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of the Effect of Flow Control Using Plasma Actuator on the Aerodynamic Performance of a VAWT

نویسندگان [English]

  • Saeed Karimian Aliabadi
  • Seyed Javad Gaskarinezhad
Dept. of Mechanical Engineering, Aerospace Engineering, Tarbiat Modares University, Tehran.
چکیده [English]

In this study, a numerical approach is employed to examine the effects of active flow control using the SDBD (Surface Dielectric Barrier Discharge) plasma actuator model on the aerodynamic performance of a Darrieus vertical-axis wind turbine. The unsteady, pressure-based Navier-Stokes equations are solved in 2D computational domain, using the finite volume method. One of the common challenges for vertical-axis wind turbines is dynamic stall and flow separation. Therefore, before applying plasma control, the flow physics around the Darrieus wind turbine is analyzed, with a focus on the aerodynamic forces and torques affecting the instantaneous torque generated by the blades. Subsequently, plasma actuators are positioned at 3 distinct chord-wise locations on the airfoils, namely at 0.25, 0.5, and 0.75 chord lengths. The plasma dynamics are incorporated using user-defined functions (UDFs) according to the SDBD model. Results indicate that the 0.25 chord position yields the most improvement, increasing the overall power coefficient by up to 20%. Moreover, the plasma actuator mitigates dynamic stall, suppresses vortex formation, and enhances aerodynamic forces and torques. Overall, the primary effect of the plasma actuator is observed in the upstream flow region and during the blade’s downward motion, which leads to improvements in local blade torque and output power.

کلیدواژه‌ها [English]

  • Wind energy
  • wind turbine
  • active flow control
  • plasma actuator
  • 2D numerical method
1. Kantrowitz, A.R., 1955, January. A survey of physical phenomena occurring in flight at extreme speeds. In Proceedings of the conference on high-speed aeronautics (Vol. 1955, pp. 335-339). Polytechnic Institute of Brooklyn, New York.
2. Roth, J., Sherman, D. and Wilkinson, S., 1998, January. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In 36th AIAA Aerospace Sciences Meeting and Exhibit(p. 328). https://doi.org/10.2514/6.1998-328
3. Post, M.L. and Corke, T.C., 2006. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA journal44(12), pp.3125-3135 https://doi.org/10.2514/1.22716.
4. Liu, Y., Kolbakir, C., Hu, H., Meng, X. and Hu, H., 2019. An experimental study on the thermal effects of duty-cycled plasma actuation pertinent to aircraft icing mitigation. International Journal of Heat and Mass Transfer136, pp.864-876 https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.068.
5. Rezaeiha, A., Kalkman, I. and Blocken, B., 2017. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied energy197, pp.132-150. https://doi.org/10.1016/j.apenergy.2017.03.128
6. Zhong, J., Li, J., Guo, P. and Wang, Y., 2019. Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod. Energy174, pp.246-260. https://doi.org/10.1016/j.energy.2019.02.176
7. McCroskey, W. 1981. The phenomenon of dynamic stall. NASA Technical Memorandum 81264 National Aeronautics and Space Administration Ames Research Center Moffett Field CA USA .       
8. Araya, D.B. and Dabiri, J.O., 2015. Vertical axis wind turbine in a falling soap film. Physics of Fluids27(9). https://doi.org/10.1063/1.4930912
9. Rezaeiha, A., Montazeri, H. and Blocken, B., 2019. CFD analysis of dynamic stall on vertical axis wind turbines using Scale-Adaptive Simulation (SAS): Comparison against URANS and hybrid RANS/LES. Energy Conversion and Management196, pp.1282-1298. https://doi.org/10.1016/j.enconman.2019.06.081
10. Zhu, H., Hao, W., Li, C. and Ding, Q., 2019. Numerical investigation on the effects of different wind directions, solidity, airfoils, and building configurations on the aerodynamic performance of building augmented vertical axis wind turbines. International Journal of Green Energy16(15),pp.1624-1636 https://doi.org/10.1080/15435075.2019.1681427
11. Zuo, Z. and Zhang, X., 2025. Flow Control over a Two-Element Airfoil Using a Dielectric-Barrier-Discharge Plasma Actuator. AIAA Journal, pp.1-11. https://doi.org/10.2514/1.J064919
12. Zhang, H., Yu, H., Zhang, A. and Zheng, J., 2023. Large eddy simulation of dynamic stall over an airfoil and its control with plasma actuator. AIP Advances13(2). https://doi.org/10.1063/5.0133577
13. Ma, L., Wang, X., Zhu, J. and Kang, S., 2019. Dynamic stall of a vertical-axis wind turbine and its control using plasma actuation. Energies12(19), p.3738. https://doi.org/10.3390/en12193738
14. Zare Chavoshi, M. and Ebrahimi, A., 2022. Plasma actuator effects on the flow physics of dynamic stall for a vertical axis wind turbine. Physics of Fluids34(7). https://doi.org/10.1063/5.0099993
15. Greenblatt, D., Schulman, M. and Ben-Harav, A., 2012. Vertical axis wind turbine performance enhancement using plasma actuators. Renewable Energy37(1), pp.345-354. https://doi.org/10.1016/j.renene.2011.06.040
16. Greenblatt, D., Ben-Harav, A. and Mueller-Vahl, H., 2014. Dynamic stall control on a vertical-axis wind turbine using plasma actuators. AIAA journal52(2), pp.456-462. https://doi.org/10.2514/1.J052776
17. Ben‐Harav, A. and Greenblatt, D., 2016. Plasma‐based feed‐forward dynamic stall control on a vertical axis wind turbine. Wind Energy19(1), pp.3-16. https://doi.org/10.1002/we.1814
18. Battisti, L., Persico, G., Dossena, V., Paradiso, B., Castelli, M.R., Brighenti, A. and Benini, E., 2018. Experimental benchmark data for H-shaped and troposkien VAWT architectures. Renewable energy, 125, pp.425-444 https://doi.org/10.1016/j.renene.2018.02.098.
19. Rezaeiha, A., Montazeri, H. and Blocken, B., 2018. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy conversion and management, 156, pp.301-316. https://doi.org/10.1016/j.enconman.2017.11.026
20.  Ebrahimi, A. and Movahhedi, M., 2017. Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators. Energy Conversion and Management146, pp.96-106 https://doi.org/10.1016/j.enconman.2017.05.019
21. Silva-Llanca, L. and Inostroza-Lagos, S., 2021. Optimum power generation assessment in an H-Darrieus vertical axis wind turbine via Exergy Destruction Minimization. Energy Conversion and Management243, p.114312. https://doi.org/10.1016/j.enconman.2021.114312
22. Jayaraman, B. and Shyy, W., 2008. Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Progress in Aerospace Sciences44(3), pp.139-191. https://doi.org/10.1016/j.paerosci.2007.10.004
23. Shyy, W., Jayaraman, B. and Andersson, A., 2002. Modeling of glow discharge-induced fluid dynamics. Journal of applied physics92(11), pp.6434-6443. https://doi.org/10.1063/1.1515103
24. Roth, J., Sherman, D. and Wilkinson, S., 1998, January. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In 36th AIAA Aerospace Sciences Meeting and Exhibit(p. 328). https://doi.org/10.2514/6.1998-328