1. Kantrowitz, A.R., 1955, January. A survey of physical phenomena occurring in flight at extreme speeds. In Proceedings of the conference on high-speed aeronautics (Vol. 1955, pp. 335-339). Polytechnic Institute of Brooklyn, New York.
2. Roth, J., Sherman, D. and Wilkinson, S., 1998, January. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In
36th AIAA Aerospace Sciences Meeting and Exhibit(p. 328).
https://doi.org/10.2514/6.1998-328
3. Post, M.L. and Corke, T.C., 2006. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil.
AIAA journal,
44(12), pp.3125-3135
https://doi.org/10.2514/1.22716.
4. Liu, Y., Kolbakir, C., Hu, H., Meng, X. and Hu, H., 2019. An experimental study on the thermal effects of duty-cycled plasma actuation pertinent to aircraft icing mitigation.
International Journal of Heat and Mass Transfer,
136, pp.864-876
https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.068.
7. McCroskey, W. 1981. The phenomenon of dynamic stall. NASA Technical Memorandum 81264 National Aeronautics and Space Administration Ames Research Center Moffett Field CA USA .
9. Rezaeiha, A., Montazeri, H. and Blocken, B., 2019. CFD analysis of dynamic stall on vertical axis wind turbines using Scale-Adaptive Simulation (SAS): Comparison against URANS and hybrid RANS/LES.
Energy Conversion and Management,
196, pp.1282-1298.
https://doi.org/10.1016/j.enconman.2019.06.081
10. Zhu, H., Hao, W., Li, C. and Ding, Q., 2019. Numerical investigation on the effects of different wind directions, solidity, airfoils, and building configurations on the aerodynamic performance of building augmented vertical axis wind turbines.
International Journal of Green Energy,
16(15),pp.1624-1636
https://doi.org/10.1080/15435075.2019.1681427
11. Zuo, Z. and Zhang, X., 2025. Flow Control over a Two-Element Airfoil Using a Dielectric-Barrier-Discharge Plasma Actuator.
AIAA Journal, pp.1-11.
https://doi.org/10.2514/1.J064919
12. Zhang, H., Yu, H., Zhang, A. and Zheng, J., 2023. Large eddy simulation of dynamic stall over an airfoil and its control with plasma actuator.
AIP Advances,
13(2).
https://doi.org/10.1063/5.0133577
13. Ma, L., Wang, X., Zhu, J. and Kang, S., 2019. Dynamic stall of a vertical-axis wind turbine and its control using plasma actuation.
Energies,
12(19), p.3738.
https://doi.org/10.3390/en12193738
14. Zare Chavoshi, M. and Ebrahimi, A., 2022. Plasma actuator effects on the flow physics of dynamic stall for a vertical axis wind turbine.
Physics of Fluids,
34(7).
https://doi.org/10.1063/5.0099993
16. Greenblatt, D., Ben-Harav, A. and Mueller-Vahl, H., 2014. Dynamic stall control on a vertical-axis wind turbine using plasma actuators.
AIAA journal,
52(2), pp.456-462.
https://doi.org/10.2514/1.J052776
17. Ben‐Harav, A. and Greenblatt, D., 2016. Plasma‐based feed‐forward dynamic stall control on a vertical axis wind turbine.
Wind Energy,
19(1), pp.3-16.
https://doi.org/10.1002/we.1814
18. Battisti, L., Persico, G., Dossena, V., Paradiso, B., Castelli, M.R., Brighenti, A. and Benini, E., 2018. Experimental benchmark data for H-shaped and troposkien VAWT architectures. Renewable energy, 125, pp.425-444
https://doi.org/10.1016/j.renene.2018.02.098.
19. Rezaeiha, A., Montazeri, H. and Blocken, B., 2018. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy conversion and management, 156, pp.301-316.
https://doi.org/10.1016/j.enconman.2017.11.026
21. Silva-Llanca, L. and Inostroza-Lagos, S., 2021. Optimum power generation assessment in an H-Darrieus vertical axis wind turbine via Exergy Destruction Minimization.
Energy Conversion and Management,
243, p.114312.
https://doi.org/10.1016/j.enconman.2021.114312
23. Shyy, W., Jayaraman, B. and Andersson, A., 2002. Modeling of glow discharge-induced fluid dynamics.
Journal of applied physics,
92(11), pp.6434-6443.
https://doi.org/10.1063/1.1515103
24. Roth, J., Sherman, D. and Wilkinson, S., 1998, January. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In
36th AIAA Aerospace Sciences Meeting and Exhibit(p. 328).
https://doi.org/10.2514/6.1998-328