تأثیر زاویه ی نصب پره‌های ثابت بر محدوده ی کارکرد با راندمان بالای پمپ معکوس سانتریفیوژ

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده‌ی مهندسی مکانیک، دانشگاه علم و صنعت، تهران، ایران

چکیده

با توجه به محدودیت منابع فسیلی و چالش‌های زیست‌محیطی نیروگاه‌های سنتی، توسعه‌ی فناوری‌های انرژی تجدیدپذیر در راستای تأمین نیازهای جهانی، توجه گسترده‌ای را به خود معطوف کرده است. استفاده از پمپ معکوس برای بازیابی انرژی در نیروگاه‌های برقابی کوچک احداث‌شده در شبکه‌ی توزیع و انتقال آب در سال‌های اخیر فراگیر شده است. در مطالعه‌ی حاضر، عملکرد یک پمپ معکوس سانتریفیوژ به‌صورت‌های عددی و تجربی در محدوده‌ی کاری بررسی شده است. پمپ معکوس تجهیزی برای کنترل جریان ورودی به پروانه ندارد و کاهش قابل‌توجهی در راندمان در شرایط خارج از طراحی اتفاق می‌افتد. برای بهبود کارایی پمپ معکوس، یک دیفیوزر با پره طراحی و تأثیر زاویه‌ی پره‌های ثابت در عملکرد توربینی به‌صورت عددی تحلیل شده است. توزیع انرژی جنبشی آشفتگی در دیفیوزری، که پره‌های ثابت با زاویه‌ی 25 درجه دارد، یکنواخت‌تر بوده و راندمان در نقطه‌ی عملکردی، 63/2٪ افزایش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Fixed Blades Installation Angle on the High-Efficiency Operating Range of a Centrifugal Pump asTurbine

نویسندگان [English]

  • Mohammad Hassan Shojaeefard
  • Salman Saremian
Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

Using the pump as turbine (PAT) for energy recovery has received considerable attention in recent years as an efficient and economical approach. This study investigates the performance of a centrifugal PAT both numerically and experimentally within its operational range. For numerical analysis, design and simulation processes were conducted using CFturbo and CFX software. The validity of numerical simulations was confirmed by comparing them with experimental results. Due to the absence of a flow control mechanism at the impeller inlet, a significant reduction in efficiency is observed compared to pumping mode, particularly under off-design conditions. To enhance PAT performance, a diffuser with fixed blades was designed, and the impact of its blade angles on performance was numerically analyzed by varying angles between 15° and 35°. Turbulent kinetic energy parameter was employed to evaluate performance at different fixed blade angles. Results indicate that the blades' installation angle substantially affects both the distribution and the magnitude turbulent kinetic energy. Higher turbulence intensity was primarily concentrated in the impeller and volute tongue. Comparison of turbulent kinetic energy contours indicates that for a PAT with fixed blades at 25°, the distribution is more uniform, resulting in an efficiency improvement of 2.63% at the design point.

1. Ding, Y. Tan, Q. Shan, Z. Han, J. and Zhang, Y., 2023. A two‐stage dispatching optimization strategy for hybrid renewable energy system with low‐carbon and sustainability in ancillary service market. Renewable Energy, 207, pp. 647–659. https://doi.org/10.1016/j.renene.2023.03.050
2. Telikani, A. Rossi, M. Khajehali, N. and Renzi, M., 2023. Pumps‐as‐Turbines (PaTs) performance prediction improvement using evolutionary artificial neural networks. Applied Energy, 330, pp. 120316. https://doi.org/10.1016/j.apenergy.2022.120316
3. Destek, M. A. and Sinha, A., 2020. Renewable, non‐renewable energy consumption, economic growth, trade openness and ecological footprint: evidence from Organisation for Economic Co‐operation and Development countries. Journal of Cleaner Production, 242, pp. 118537. https://doi.org/10.1016/j.jclepro.2019.118537
4. Hanif, I. Aziz, B. and Chaudhry, I. S., 2019. Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renewable Energy, 143, pp. 586–595. https://doi.org/10.1016/j.renene.2019.05.032
5. Ma, J. and Poursoleiman, R., 2022. Optimization of the home energy system in presence of price fluctuation and intermittent renewable energy sources in grid‐connected and islanded modes. Sustainable Energy Technologies and Assessments, 54, pp. 102875. https://doi.org/10.1016/j.seta.2022.102875
6. Williamson, S. J. Stark, B. H. and Booker, J. D., 2014. Low head pico hydro turbine selection using a multi‐criteria analysis. Renewable Energy, 61, pp. 43–50. https://doi.org/10.1016/j.renene.2012.06.020
7. Saremian, S. and Shojaeefard, M. H., 2024. Numerical study of the influence of changing impeller geometry on improving the performance of a centrifugal pump as turbine. Amirkabir Journal of Mechanical Engineering, 56(1), pp. 103–124. [In Persian]. https://doi.org/10.22060/mej.2024.22708.7680
8. García-Ávila, F. Avilés-Añazco, A. Ordoñez-Jara, J. Guanuchi-Quezada, C. Flores del Pino, L. and Ramos-Fernández, L., 2019. Pressure management for leakage reduction using pressure reducing valves. Case study in an Andean city. Alexandria Engineering Journal, 58 (4), pp. 1313–1326. https://doi.org/10.1016/j.aej.2019.11.003
9. Paola, F. Galdiero, E. and Giugni, M., 2015. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks. Engineering Optimization, 48, pp. 1–13. https://doi.org/10.1080/0305215X.2015.1042476
10. Giugni, M. Fontana, N. and Portolano, D., 2009. Energy saving policy in water distribution networks. Renewable Energy & Power Quality, 1, pp. 733–738. https://doi.org/10.24084/
11. Lydon, T. Coughlan, P. and McNabola, A., 2017. Pressure management and energy recovery in water distribution networks: Development of design and selection methodologies using three pump-as-turbine case studies. Renewable Energy, 114, pp. 1038–1050. https://doi.org/10.1016/j.renene.2017.07.120
12. Borge-Diez, D. Godoy-Déniz, J. M. López-Rey, A. and Colmenar-Santos, A., 2021. Pico turbines, the solution to self-supply energy to the water supply network. A case study in Las Palmas de Gran Canaria. Energy, 229, pp. 120653. https://doi.org/10.1016/j.energy.2021.120653
13. Motwani, K. H. Jain, S. V. and Patel, R. N., 2013. Cost analysis of pump as turbine for pico hydropower plants – A case study. Procedia Engineering, 51, pp. 721–726. https://doi.org/10.1016/j.proeng.2013.01.103
14. Rossi, M. and Renzi, M., 2018. A general methodology for performance prediction of pumps-as-turbines using artificial neural networks. Renewable Energy, 128, pp. 265–274.  https://doi.org/10.1016/j.renene.2018.05.060
15. Zhu, Z. Gu, Q. Chen, H. Ma, Z. and Cao, B., 2024. Investigation and optimization into flow dynamics for an axial flow pump as turbine (PAT) with ultra-low water head. Energy Conversion and Management, 314, pp. 118684. https://doi.org/10.1016/j.enconman.2024.118684
16. Morani, M. C. Carravetta, A. Fecarotta, O. and McNabola, A., 2020. Energy transfer from the freshwater to the wastewater network using a PAT-equipped turbopump. Water, 12 (1), pp. 1–20. https://doi.org/10.3390/w12010038
17. Renzi, M. Rudolf, P. Stefan, D. Nigro, A. and Rossi, M., 2019. Installation of an axial Pumpas-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study. Applied Energy, 250, pp. 665–676. https://doi.org/10.1016/j.apenergy.2019.05.052
18. Shojaeefard, M. H. and Saremian, S., 2022. Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network. Energy, 255, pp. 124550. https://doi.org/10.1016/j.energy.2022.124550
19. Wang, L. Asomani, S. N. Yuan, J. and Appiah, D., 2020. Geometrical optimization of pump-as-turbine (PAT) impellers for enhancing energy efficiency with 1-D theory. Energies, 13 (16), pp. 4120. https://doi.org/10.3390/en13164120
20. Tchada, A. M. Tchoumboué, N. K. Mesquita, A. L. A. and Hendrick, P., 2024. Enhancing pump as turbine (PAT) performances: A numerical investigation into the impact of impeller leading edge rounding. Heliyon, 10 (15), pp. e34663. https://doi.org/10.1016/j.heliyon.2024.e34663
21. Shojaeefard, M. H. and Saremian, S., 2023. Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network. Renewable Energy, 216, p. 119060. https://doi.org/10.1016/j.renene.2023.119060
22. Yuxing, B. Fanyu, C. Sunsheng, Y. Kai, C. and Tao, D., 2017. Effect of blade wrap angle in hydraulic turbine with forward-curved blades. International Journal of Hydrogen Energy, pp. 18709–18717. https://doi.org/10.1016/j.ijhydene.2017.04.185
23. Yang, S. S. Wang, C. Chen, K. and Yuang, K., 2014. Research on blade thickness influencing pump as turbine. Advances in Mechanical Engineering, pp. 18709–18717. https://doi.org/10.1155/2014/190530
24. Sen-chun, M. Zhi-xiao, S. Xiao-hui, W. Feng-xia, S. and Guang-tai, S., 2019. Impeller meridional plane optimization of pump as turbine. Science Progress, 103 (1), pp. 1–17. https://doi.org/10.1177/00368504198765
25. Yu, H. Wang, T. Dong, Y. Gou, Q. Lei, L. and Liu, Y., 2023. Numerical investigation of splitter blades on the performance of a forward-curved impeller used in a pump as turbine. Ocean Engineering, 281, pp. 114721. https://doi.org/10.1016/j.oceaneng.2023.114721
26. Wang, S. Yang, J. and Xu, G., 2023. Influence of Positive Guide Vane Geometric Parameters on the Head-Flow Curve of the Multistage Pump as Turbine. Processes, 11, 3393. https://doi.org/10.3390/pr11123393
27. Qian, Z. Wang, F. Guo, Z. and Lu, J., 2016. Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode. Renewable Energy, 99, pp. 1146–1152. https://doi.org/10.1016/j.renene.2016.08.020
28. Shi, F. Yang, J. and Wang, X., 2018. Analysis on the effect of variable guide vane numbers on the performance of pump as turbine. Advances in Mechanical Engineering, 10, pp. 1–9. https://doi.org/10.1177/168781401878
29. Yan, X. Kan, K. Zheng, Y. Xu, Z. Rossi, M. and Xu, , 2024. The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode. Energy, 289, pp. 130086. https://doi.org/10.1016/j.energy.2023.130086
30. Menter, F. R., 2009. Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics, 23 (4), pp. 305–316. https://doi.org/10.1080/10618560902773387
31. Shojaeefard, M. H. Tahani, M. Ehghaghi, M. B. Fallahian, M. A. and Beglari, M., 2012. Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Computers & Fluids, 60, pp. 61–70. https://doi.org/10.1016/j.compfluid.2012.02.028
32. Tahani, M. Saremian, S. Yousefi, H. Noorollahi, Y. and Fahimi, R., 2019. Investigation effect of type and diameter of volute on the efficiency of centrifugal reverse pump at different operating conditions. Journal of Mechanical Engineering, 49, pp. 229–238. [In Persian]. https://tumechj.tabrizu.ac.ir/article_9029.html
33. Ghorani, M. M. Sotoude Haghighi, M. H. Maleki, A. and Riasi, A., 2020. A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory. Renewable Energy, 162, pp. 1036–1053. https://doi.org/10.1016/j.renene.2020.08.102
34. Tahani, M. and Saremian, S., 2018. Investigation effect of changes geometry of impeller on turbine mode performance of the centrifugal pump at the governing condition of the urban water distribution network. Modares Mechanical Engineering, 18 (1), pp. 11–19. [In Persian]. http://mme.modares.ac.ir/article-15-825-en.html
35. Shojaeefard, M. H. and Saremian, S., 2024. Analyzing the impact of blade geometrical parameters on energy recovery and efficiency of centrifugal pump as turbine installed in the pressure-reducing station. Energy, 289, pp. 130004. https://doi.org/10.1016/j.energy.2023.130004
36. Yousefi, H. Noorollahi, Y. Tahani, M. Fahimi, R. and Saremian, S., 2019. Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping. Sustainable Energy Technologies and Assessments, 34, pp. 16–26. https://doi.org/10.1016/j.seta.2019.04.011
37. Saremian, S. and Shojaeefard, M. H., 2025. The role of changing runner geometry in expanding energy efficiency of a centrifugal pump as turbine (PAT). Sustainable Energy Technologies and Assessments, 77, pp. 104329. https://doi.org/10.1016/j.seta.2025.104329
38. Maleki, A. Ghorani, M. M. Haghighi, M. H. S. and Riasi, A., 2020. Numerical study on the effect of viscosity on a multistage pump running in reverse mode. Renewable Energy, 150, pp. 234–254. https://doi.org/10.1016/j.renene.2019.12.113
39. Moffat, R. J., 1982. Contributions to the theory of single-sample uncertainty analysis. Journal of Fluids Engineering, 104 (2), pp. 250–258. https://doi.org/10.1115/1.3241818
40. Carravetta, A. Derakhshan, S. and Ramos, H. M., 2018. Pumps as Turbines: Fundamentals and Applications. 1th Edn., pp.77-96, Springer Cham, Switzerland. https://doi.org/10.1007/978-3-319-67507-7
41. Yang, S. S. Derakhshan, S. and Kong, F. Y., 2012. Theoretical, numerical and experimental prediction of pump as turbine performance. Renewable Energy, 48, pp. 507-513. https://doi.org/10.1016/j.renene.2012.06.002
42. Xie, H. Luo, X. Feng, J. Zhu, G. and Wang, L., 2024. Energy performance and flow characteristics of a pump-turbine under pump mode at different guide vane openings. Journal of Energy Storage, 97, pp. 112743. https://doi.org/10.1016/j.est.2024.112743