2. Sharif, R., Bak-Nielsen, S., Hjortdal, J. and Karamichos, D., 2018. Pathogenesis of Keratoconus: The intriguing therapeutic potential of Prolactin-inducible protein.
Progress in Retinal and Eye Research, 67, pp. 150-167.
https://doi.org/10.1016/j.preteyeres.2018.05.002
4. Buzzonetti, L., Bohringer, D., Liskova, P., Lang, S. and Valente, P., 2020. Keratoconus in Children: A Literature Review.
Cornea, 39(12), pp. 1592-1598.
https://doi.org/10.1097/ico.0000000000002420
5. Röck, T., Bartz-Schmidt, K.U. and Röck, D., 2018. Trends in corneal transplantation at the University Eye Hospital in Tübingen, Germany over the last 12 years: 2004 - 2015.
PLoS One, 13(6).
https://doi.org/10.1371/journal.pone.0198793
6. Xu, H., Wen, Y., Zheng, H., Jiang, D. and Chen, W., 2024. Allergic disease and keratoconus: A two-sample univariable and multivariable Mendelian randomization study.
World Allergy Organization Journal, 17(12), pp. 100993.
https://doi.org/https://doi.org/10.1016/j.waojou.2024.100993
7. Abadou, J., Dahan, S., Knoeri, J., Leveziel, L., Bouheraoua, N. and Borderie, V.M., 2024. Artificial intelligence versus conventional methods for RGP lens fitting in keratoconus.
Contact Lens and Anterior Eye, pp. 102321.
https://doi.org/https://doi.org/10.1016/j.clae.2024.102321
8. Suzaki, A., Koh, S., Maeda, N., Asonuma, S., Santodomingo-Rubido, J., Oie, Y., Soma, T., Fujikado, T. and Nishida, K., 2021. Optimizing correction of coma aberration in keratoconus with a novel soft contact lens.
Contact Lens and Anterior Eye, 44(4), pp. 101405.
https://doi.org/https://doi.org/10.1016/j.clae.2020.12.071
9. Schirmbeck, T., Paula, J.S., Martin, L.F., Crósio Filho, H. and Romão, E., 2005. [Efficacy and low cost in keratoconus treatment with rigid gas-permeable contact lens].
Arquivos Brasileiros de Oftalmologia, 68(2), pp. 219-22.
https://doi.org/10.1590/s0004-27492005000200012
10. Javadi, M.A., Motlagh, B.F., Jafarinasab, M.R., Rabbanikhah, Z., Anissian, A., Souri, H. and Yazdani, S., 2005. Outcomes of penetrating keratoplasty in keratoconus.
Cornea, 24(8), pp. 941-6.
https://doi.org/10.1097/01.ico.0000159730.45177.cd
11. Poulsen, D.M. and Kang, J.J., 2015. Recent advances in the treatment of corneal ectasia with intrastromal corneal ring segments.
Current Opinion in Ophthalmology, 26(4), pp. 273-7.
https://doi.org/10.1097/icu.0000000000000163
12. Lago, M.A., Rupérez, M.J., Monserrat, C., Martínez-Martínez, F., Martínez-Sanchis, S., Larra, E., Díez-Ajenjo, M.A. and Peris-Martínez, C., 2015. Patient-specific simulation of the intrastromal ring segment implantation in corneas with keratoconus.
Journal of the Mechanical Behavior of Biomedical Materials, 51, pp. 260-268.
https://doi.org/https://doi.org/10.1016/j.jmbbm.2015.07.023
13. Flecha-Lescún, J., Calvo, B., Zurita, J. and Ariza-Gracia, M., 2018. Template-based methodology for the simulation of intracorneal segment ring implantation in human corneas.
Biomechanics and Modeling in Mechanobiology, 17(4), pp. 923-938.
https://doi.org/10.1007/s10237-018-1013-z
16. Yoosefzadeh-Najafabadi, M., Earl, H.J., Tulpan, D., Sulik, J. and Eskandari, M., 2020. Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean.
Frontiers in Plant Science, 11, pp. 624273.
https://doi.org/10.3389/fpls.2020.624273
19. Valdés-Mas, M.A., Martín-Guerrero, J.D., Rupérez, M.J., Pastor, F., Dualde, C., Monserrat, C. and Peris-Martínez, C., 2014. A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation.
Computer Methods and Programs in Biomedicine, 116(1), pp. 39-47.
https://doi.org/10.1016/j.cmpb.2014.04.003
20. Ting, D.S.J., Foo, V.H., Yang, L.W.Y., Sia, J.T., Ang, M., Lin, H., Chodosh, J., Mehta, J.S. and Ting, D.S.W., 2021. Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology.
British Journal of Ophthalmology, 105(2), pp. 158-168.
https://doi.org/10.1136/bjophthalmol-2019-315651
23. Liu, M., He, Y. and Ye, B., 2007. Image Zernike moments shape feature evaluation based on image reconstruction.
Geo-spatial Information Science, 10(3), pp. 191-195.
https://doi.org/10.1007/s11806-007-0060-x
24. Yuan, F., Sun, Y., Han, Y., Chu, H., Ma, T. and Shen, H., 2024. Using Diffraction Deep Neural Networks for Indirect Phase Recovery Based on Zernike Polynomials.
Sensors (Basel), 24(2).
https://doi.org/10.3390/s24020698