بررسی تجربی اثر پیش ‌خلأسازی در عملکرد راه‌اندازی دیفیوزر شبیه‌ساز خلأ در آزمون نازل مخروطی با نسبت انبساط مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی سامانه‌های حمل‌ونقل فضایی، پژوهشگاه فضایی ایران.

2 دانشکده‌ی مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران.

چکیده

در پژوهش حاضر به روش تجربی، اثر پیش ‌خلأسازی در فرآیند راه‌اندازی یک دیفیوزر گلوگاه ثانویه در بستر شبیه‌ساز ارتفاع بالا با استفاده از 4 نسبت سطح ورودی دیفیوزر به سطح‌های‌ خروجی نازل‌: 27/1، 91/1، 1/4، و 81/7 تحت هوای فشرده بررسی شده است. نسبت سطح‌ها از طریق 4 نازل مخروطی با نسبت انبساط‌های مختلف تغییر داده شده‌اند. آزمایش‌ها با استفاده از اندازه‌گیری فشار روی دیواره‌های دیفیوزر و محفظه‌ی خلأ در حالت‌های با و بدون پیش ‌خلأسازی انجام شده‌اند. بررسی عملکرد دیفیوزر در فرآیند راه‌اندازی نشان داده است که افزایش نسبت سطح ورودی دیفیوزر به خروجی نازل در محدوده‌ای از فشار محفظه‌ی نازل سبب شکل‌گیری نوسان فشار متناوب در تمام طول دیفیوزر و محفظه‌ی خلأ شده است. همچنین مشاهده شده است که پیش ‌خلأسازی فضای داخلی دیفیوزر و محفظه‌ی خلأ، تغییری در عملکرد دیفیوزر در حضور نوسان فشار ایجاد نکرده و پیش‌ خلأسازی، فقط در زمان راه‌اندازی و شروع نوسان‌های مذکور مؤثر بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of the Effect of Pre-evacuation on the Starting Performance of a Vacuum Simulator Diffuser with Conical Nozzles of Different Expansion Ratios

نویسندگان [English]

  • Nematollah Fouladi 1
  • Mohammad Farahani 2
  • Amirali Nojoumi 2
1 1Space Transportation Research Institute, Iranian Space Research Center, Tehran, Iran.
2 Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

The starting time of a high-altitude exhaust diffuser is a key factor in evaluating an engine’s unsteady performance. One common approach to reduce this time is to pre‑evacuate the vacuum chamber and part or all of the diffuser. This study examines how pre-evacuation influences diffuser performance using four diffuser inlet to nozzle outlet area ratios 1.27, 1.91, 4.1, and 7.81, tested using compressed air and rapid nozzle pressurization. These ratios correspond to four conical nozzles with expansion ratios of 45, 30, 15, and 7.5. Wall pressures were measured at 13 points along the diffuser and vacuum chamber, both with and without pre-evacuation. The pre-evacuation process used a vacuum pump. Results showed that at area ratios of 1.91 and higher, harmonic pressure oscillations develop in the diffuser and vacuum chamber. Pre-evacuation did not eliminate these oscillations but shortened their onset and the diffuser starting time, especially at an area ratio of 1.27, where the narrow annular gap delays starting. Mass flow rate analysis revealed alternating filling and emptying of the vacuum chamber during oscillations. Fourier analysis indicated that oscillation frequency increases with area ratio, while amplitude decreases.

کلیدواژه‌ها [English]

  • High-altitude test facility
  • second throat exhaust diffuser
  • pre-evacuation
  • pressure oscillation
1. Fouladi, N., Afkhami, S., and Pasandideh Fard, M., 2023. Experimental and comprehensive investigation of second throat diffuser area effect on ground test of a thrust optimized parabolic nozzle with different expansion ratios. Acta Astronautica, 209, pp. 146-158. https://doi.org/10.1016/j.actaastro.2023.05.004
2. Fouladi, N., Mohamadi, A., and Rezaei, H., 2017. Numerical investigation of pre-evacuation influences of second throat exhaust diffuser. Fluid Mechanics and Aerodynamics, 5(2), pp. 55-69. [In Persian].
3. Ashokkumar, R., Sankaran, S., and Sundararajan, T. “Investigation on the performance of second throat supersonic exhaust diffuser for starting higher area ratio nozzles”. 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference including the Aerospace T&E Days Forum, (2012). https://doi.org/10.2514/6.2012-3294
4. Park, B. H., Lee, J. H., and Yoon, W., 2008. Studies on the starting transient of a straight cylindrical supersonic exhaust diffuser: Effects of diffuser length and pre-evacuation state. International Journal of Heat and Fluid Flow, 29(5), pp. 1369-1379. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.006
5. Park, B. H., Lim, J. H., and Yoon, W., 2008. Fluid dynamics in starting and terminating transients of zero-secondary flow ejector. International Journal of Heat and Fluid Flow, 29(1), pp. 327-339. https://doi.org/10.1016/j.ijheatfluidflow.2007.06.008
6. Ashokkumar, R., Sankaran, S., Srinivasan, K., and Sundararajan, T., 2015. Effects of vacuum chamber and reverse flow on supersonic exhaust diffuser starting. Journal of Propulsion and Power, 31(2), pp. 750-754. https://doi.org/10.2514/1.B35156
7. Annamalai, K., Visvanathan, K., Sriramulu, V., and Bhaskaran, K., 1998. Evaluation of the performance of supersonic exhaust diffuser using scaled down models. Experimental Thermal and Fluid Science, 17(3), pp. 217-229. https://doi.org/10.1016/S0894-1777(98)00002-8
8. Sankaran, S., 2002. CFD analysis for simulated altitude testing of rocket motors. Canadian Aeronautics and Space Journal, 48, pp. 153-162. http://dx.doi.org/10.5589/q02-018
9. Afkhami, S., Fouladi, N., and Pasandideh Fard, M., 2023. Experimental and numerical investigation of transient starting of pre-evacuated exhaust diffuser in high altitude ground test. Aerospace Science and Technology, pp. 108-111. https://doi.org/10.1016/j.ast.2023.108111
10. Fouladi, N., Farahani, M., and Mirbabaei, A., 2019. Performance evaluation of a second throat exhaust diffuser with a thrust optimized parabolic nozzle. Aerospace science and technology, 94. https://doi.org/10.1016/j.ast.2019.105406
11. Fouladi, N., 2017. Numerical investigation of back flow arrester effect on altitude test simulator starting performance. Modares Mechanical Engineering, 17(7), pp. 185-196. [In Persian]. http://dorl.net/dor/20.1001.1.10275940.1396.17.7.45.7
12. Park, B. H., Lim, J., Park, S., Lee, J. H., and Yoon, W. S., 2012. Design and analysis of a second-throat exhaust diffuser for altitude simulation. Journal of Propulsion and Power, 28(5), pp. 1091-1104. http://dx.doi.org/10.2514/1.B34342
13. Coleman, H. W., and Steele, W. G. “Experimentation, validation, and uncertainty analysis for engineers”. John Wiley & Sons (2018). https://doi.org/10.1002/9780470485682
14. Nojoumi, A. A. “Experimental Investigation of Pressure Oscillations Phenomenon in Test Chamber of High-altitude Simulator”. Master’s Thesis, Sharif University of Technology (2024). [In Persian].
15. Anderson J. D. “Modern compressible flow: with historical perspective”. McGraw-Hill, New York (1990). https://doi.org/10.1017/S0001924000024027
16. Fouladi, N., and Farahani, M., 2020. Numerical investigation of second throat exhaust diffuser performance with thrust optimized parabolic nozzles. Aerospace Science and Technology, 105, pp. 106-120. https://doi.org/10.1016/j.ast.2020.106020
17. Fouladi, N., Farahani, M., and Parsa A.R. “Experimental Study of the Performance of a Second Throat Diffuser in a Conical Nozzle with Different Expansion Ratios”. 21st Int. Conf. on Iranian Aerospace Society, Tehran, Iran (2023). [In Persian].