1. Ren B. Chi Y. Zhou N. Wang Q. Wang T. Luo Y. Ye J. and Zhu X. 2024. Machine learning applications in health monitoring of renewable energy systems.
Renewable and Sustainable Energy Reviews,
189, pp. 114039.
https://doi.org/10.1016/j.rser.2023.114039
2. Sikiru, S. Oladosu T.L. Amosa T.I. Olutoki J.O.,Ansari M.N.M. Abioye K.J. Rehman Z.U. and Soleimani H. 2024. Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation.
International Journal of Hydrogen Energy, 56, pp.1152-1182.
https://doi.org/10.1016/j.ijhydene.2023.12.186
3. Udo W.S. Kwakye J.M. Ekechukwu D.E. and Ogundipe O.B. 2024. Optimizing wind energy systems using machine learning for predictive maintenance and efficiency enhancement.
Journal of Renewable Energy Technology,
28(3), pp.312-330.
https://doi.org/10.51594/csitrj.v4i3.1398
4. Roy D. Samanta S. Roy S. Smallbone A. and Roskilly A.P. 2024. Techno-economic analysis of solid oxide fuel cell-based energy systems for decarbonising residential power and heat in the United Kingdom.
Green Chemistry,
26(7), pp.3979-3994.
https://doi.org/10.1039/D3GC02645K
5. Mojaver P. Chitsaz A. Sadeghi M. and Khalilarya S. 2020. Comprehensive comparison of SOFCs with proton-conducting electrolyte and oxygen ion-conducting electrolyte: thermoeconomic analysis and multi-objective optimization.
Energy Conversion and Management,
205, pp.112455.
https://doi.org/10.1016/j.enconman.2019.112455
6. Tariq U. Khan M.Z. Gohar O. Babar Z.U.D. Ali, F. Malik R.A. Starostina, I.A. Rehman J. Hussain I. Saleem M. and Ghaffar A. 2024. Bridging the gap between fundamentals and efficient devices: advances in proton-conducting oxides for low-temperature solid oxide fuel cells.
Journal of Power Sources,
613, pp. 234910. https://doi.org/
1016/j.jpowsour.2024.234910
7. Hu Z. Gao P. Wang B. Pan W. Ding L. Tang L. Chen X. and Wang F. 2024. Decoupling study of municipal solid waste gasification: effect of pelletization on pyrolysis and gasification of pyrolytic char.
Journal of Environmental Chemical Engineering,
12(6), 114334. https://doi.org/
10.1016/j.jece.2024.114334
8. Arena U. 2012. Process and technological aspects of municipal solid waste gasification. a review.
Waste management,
32(4), pp.625-639. https://doi.org/
10.1016/j.wasman.2011.09.025
9. Biancini, G. Cioccolanti L. Moradi R. and Moglie M. 2024. Comparative study of steam, organic Rankine cycle and supercritical CO2 power plants integrated with residual municipal solid waste gasification for district heating and cooling.
Applied Thermal Engineering,
241, pp.122437.
https://doi.org/10.1016/j.applthermaleng.2024.122437.
10. Gao B. and Zhou Y. 2025. Multi-objective optimization and posteriori multi-criteria decision making on an integrative solid oxide fuel cell cooling, heating and power system with semi-empirical model-driven co-simulation.
Energy Conversion and Management,
325, pp.119371.
https://doi.org/10.1016/j.enconman.2024.119371
11. Yue M. Zhang Y. Lv L. Zhu J. Fu Y. and Ye F. 2026. A novel biomass microwave-assisted pyrolysis system driven by solid oxide fuel cell: modeling and energy analysis.
Energy Conversion and Management,
348, pp.120680. https://doi.org/
10.1016/j.enconman.2025.120680
12. Ghorbani B. Zendehboudi S. Afrouzi Z.A. and Mohammadzadeh, O. 2024. Efficient hydrogen production via electro-thermochemical process and solid oxide fuel cell: thermodynamics, economics, optimization, and uncertainty analyses.
Energy Conversion and Management,
307, pp.118175.
https://doi.org/10.1016/j.enconman.2024.118175
14. Wang, Y., Wu, C., Zhao, S., Wang, J., Zu, B., Han, M., Du, Q., Ni, M. and Jiao, K., 2022. Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell. Applied energy,
315, pp.119046.
https://doi.org/10.1016/j.apenergy.2022.119046
15. Khalilarya S. Chitsaz A. and Mojaver P. 2021. Optimization of a combined heat and power system based gasification of municipal solid waste of Urmia university student dormitories via ANOVA and taguchi approaches.
International Journal of Hydrogen Energy,
46(2), pp.1815-1827. https://doi.org/
10.1016/j.ijhydene.2020.10.020
16. Mojaver P. Khalilarya S. and Chitsaz A. 2019. Multi-objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system.
Applied Thermal Engineering,
156, pp.627-639.
https://doi.org/10.1016/j.applthermaleng.2019.04.104
17. Razmi A.R. Sharifi S. Vafaeenezhad S. Hanifi A.R. and Shahbakhti M. 2024. Modeling and microstructural study of anode-supported solid oxide fuel cells: experimental and thermodynamic analyses.
International journal of hydrogen energy,
54, pp.613-634.
https://doi.org/10.1016/j.ijhydene.2023.08.296
18. Mojaver P. Khalilarya S. and Chitsaz A. 2018. Performance assessment of a combined heat and power system: a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system part I: thermodynamic analysis.
Energy Conversion and Management,
171, pp.287-297.
https://doi.org/10.1016/j.enconman.2018.05.096
19. Loha C. Chattopadhyay H. and Chatterjee P.K. 2011. Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk.
Energy,
36(7), pp.4063-4071.
https://doi.org/10.1016/j.energy.2011.04.042
20. Ranjbar F. Chitsaz A. Mahmoudi S.S. Khalilarya S. and Rosen M.A. 2014. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell.
Energy Conversion and Management,
87, pp.318-327.
https://doi.org/10.1016/j.enconman.2014.07.014.
21. Mojaver P. Khalilarya S. and Chitsaz A. 2019. Multi-objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system.
Applied Thermal Engineering,
156, pp.627-639.
https://doi.org/10.1016/j.enconman.2014.07.014.
22. Mojaver P. Abbasalizadeh M. Khalilarya S. and Chitsaz A. 2020. Co-generation of electricity and heating using a SOFC-ScCO2 Brayton cycle-ORC integrated plant: investigation and multi-objective optimization.
International Journal of Hydrogen Energy,
45(51), pp.27713-27729.
https://doi.org/10.1016/j.ijhydene.2020.07.137
23. Mojaver P. Khalilarya S. and Chitsaz A., 2021. Combined systems based on OSOFC/HSOFC: Comparative analysis and multi‐objective optimization of power and emission.
International Journal of Energy Research,
45(4), pp.5449-5469.
https://doi.org/10.1002/er.6173