بهینه سازی سیستم انرژی بر پایه ی پیل سوختی اکسید جامد هدایت پروتونی با شیوه ی یادگیری ماشین

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی مکانیک، دانشگاه صنعتی کرمانشاه، کرمانشاه، ایران.

چکیده

در پژوهش حاضر، یک سیستم انرژی بر پایه‌ی پیل سوختی اکسید جامد با هدایت پروتونی پیشنهاد شده است، که سوخت آن با استفاده از گازسازی زباله­های جامد شهری تأمین می­‌شود. پارامترهای هدف، توان خالص تولیدی و میزان نشر دی‌اکسیدکربن هستند؛ که به ازاء تغییرات پارامترهای عملیاتی چگالی جریان، دمای ورودی، و نسبت مصرف سوخت پیل سوختی اکسید جامد مطالعه شده‌‌اند. با استفاده از روش یادگیری ماشین، مدل­های رگرسیون برای پیش‌بینی رفتار خروجی­ها استخراج شده است. سپس بهینه­سازی دوهدفه به‌منظور بیشینه‌سازی توان خالص تولیدی و کمینه‌سازی دی‌اکسیدکربن منتشرشده انجام شده و نتایج نشان داده است که بهینه­ترین حالت به ازاء چگالی جریان حدوداً برابر 5798 آمپر بر مترمربع، دمای ورودی برابر 800 درجه‌ی سلسیوس، و  نسبت مصرف سوخت برابر 80/0 به‌دست آمده است. در شرایط بهینه، مقدار توان خالص تولیدی برابر 3/315 کیلووات و میزان دی‌اکسیدکربن منتشرشده برابر 4/1001 کیلوگرم بر مگاوات ساعت به‌دست آمده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance and Emission Analysis of an Energy System Based on Thermochemical Processes and a Proton-Conducting Electrolyte Fuel Cell

نویسنده [English]

  • Parisa Mojaver
Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
چکیده [English]

In this study, the performance of a hybrid system based on a thermochemical process and a proton-conducting electrolyte fuel cell is investigated from the perspectives of energy production and environmental emissions. To study the system behavior, machine learning-based regression methods were employed, and after data preprocessing, the models were trained and validated. Subsequently, system optimization was carried out with the objectives of maximizing power output and minimizing environmental emissions. The results indicate that increasing the current density and inlet temperature leads to higher power generation, while high current densities result in increased carbon dioxide emissions. The optimal operating conditions were achieved at a current density of 5798 A/m2, a temperature of 800 °C, and a fuel utilization ratio of 0.80. The minimum carbon dioxide emissions, independent of the fuel utilization ratio, were obtained at current densities below 3500 A/m2, ranging between 500 and 800 kg/MWh.

کلیدواژه‌ها [English]

  • Proton-conducting SOFC
  • energy system
  • machine learning
  • regression model
1. Ren B. Chi Y. Zhou N. Wang Q. Wang T. Luo Y. Ye J. and Zhu X. 2024. Machine learning applications in health monitoring of renewable energy systems. Renewable and Sustainable Energy Reviews189, pp. 114039. https://doi.org/10.1016/j.rser.2023.114039
2. Sikiru, S. Oladosu T.L. Amosa T.I. Olutoki J.O.,Ansari M.N.M. Abioye K.J. Rehman Z.U. and Soleimani H. 2024. Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. International Journal of Hydrogen Energy, 56, pp.1152-1182. https://doi.org/10.1016/j.ijhydene.2023.12.186
3. Udo W.S. Kwakye J.M. Ekechukwu D.E. and Ogundipe O.B. 2024. Optimizing wind energy systems using machine learning for predictive maintenance and efficiency enhancement. Journal of Renewable Energy Technology28(3), pp.312-330. https://doi.org/10.51594/csitrj.v4i3.1398
4. Roy D. Samanta S. Roy S. Smallbone A. and Roskilly A.P. 2024. Techno-economic analysis of solid oxide fuel cell-based energy systems for decarbonising residential power and heat in the United Kingdom. Green Chemistry26(7), pp.3979-3994. https://doi.org/10.1039/D3GC02645K
5. Mojaver P. Chitsaz A. Sadeghi M. and Khalilarya S. 2020. Comprehensive comparison of SOFCs with proton-conducting electrolyte and oxygen ion-conducting electrolyte: thermoeconomic analysis and multi-objective optimization. Energy Conversion and Management205, pp.112455. https://doi.org/10.1016/j.enconman.2019.112455
6. Tariq U. Khan M.Z. Gohar O. Babar Z.U.D. Ali, F. Malik R.A. Starostina, I.A. Rehman J. Hussain I. Saleem M. and Ghaffar A. 2024. Bridging the gap between fundamentals and efficient devices: advances in proton-conducting oxides for low-temperature solid oxide fuel cells. Journal of Power Sources613, pp. 234910. https://doi.org/1016/j.jpowsour.2024.234910
7. Hu Z. Gao P. Wang B. Pan W. Ding L. Tang L. Chen X. and Wang F. 2024. Decoupling study of municipal solid waste gasification: effect of pelletization on pyrolysis and gasification of pyrolytic char. Journal of Environmental Chemical Engineering12(6), 114334. https://doi.org/10.1016/j.jece.2024.114334
8. Arena U. 2012. Process and technological aspects of municipal solid waste gasification. a review. Waste management32(4), pp.625-639. https://doi.org/10.1016/j.wasman.2011.09.025
9. Biancini, G. Cioccolanti L. Moradi R. and Moglie M. 2024. Comparative study of steam, organic Rankine cycle and supercritical CO2 power plants integrated with residual municipal solid waste gasification for district heating and cooling. Applied Thermal Engineering241, pp.122437. https://doi.org/10.1016/j.applthermaleng.2024.122437.
10. Gao B. and Zhou Y. 2025. Multi-objective optimization and posteriori multi-criteria decision making on an integrative solid oxide fuel cell cooling, heating and power system with semi-empirical model-driven co-simulation. Energy Conversion and Management325, pp.119371. https://doi.org/10.1016/j.enconman.2024.119371
11. Yue M. Zhang Y. Lv L. Zhu J. Fu Y. and Ye F. 2026. A novel biomass microwave-assisted pyrolysis system driven by solid oxide fuel cell: modeling and energy analysis. Energy Conversion and Management348, pp.120680. https://doi.org/10.1016/j.enconman.2025.120680
12. Ghorbani B. Zendehboudi S. Afrouzi Z.A. and Mohammadzadeh, O. 2024. Efficient hydrogen production via electro-thermochemical process and solid oxide fuel cell: thermodynamics, economics, optimization, and uncertainty analyses. Energy Conversion and Management307, pp.118175. https://doi.org/10.1016/j.enconman.2024.118175
13. Li J. Yu T. and Yang B. 2021. A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning. Applied Energy304, pp.117541. https://doi.org/10.1016/j.apenergy.2021.117541
14. Wang, Y., Wu, C., Zhao, S., Wang, J., Zu, B., Han, M., Du, Q., Ni, M. and Jiao, K., 2022.  Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell. Applied energy, 315, pp.119046. https://doi.org/10.1016/j.apenergy.2022.119046
15. Khalilarya S. Chitsaz A. and Mojaver P. 2021. Optimization of a combined heat and power system based gasification of municipal solid waste of Urmia university student dormitories via ANOVA and taguchi approaches. International Journal of Hydrogen Energy46(2), pp.1815-1827.  https://doi.org/10.1016/j.ijhydene.2020.10.020
16. Mojaver P. Khalilarya S. and Chitsaz A. 2019. Multi-objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system. Applied Thermal Engineering156, pp.627-639. https://doi.org/10.1016/j.applthermaleng.2019.04.104
17. Razmi A.R. Sharifi S. Vafaeenezhad S. Hanifi A.R. and Shahbakhti M. 2024. Modeling and microstructural study of anode-supported solid oxide fuel cells: experimental and thermodynamic analyses. International journal of hydrogen energy54, pp.613-634.  https://doi.org/10.1016/j.ijhydene.2023.08.296
18. Mojaver P. Khalilarya S. and Chitsaz A. 2018. Performance assessment of a combined heat and power system: a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system part I: thermodynamic analysis. Energy Conversion and Management171, pp.287-297. https://doi.org/10.1016/j.enconman.2018.05.096
19. Loha C. Chattopadhyay H. and Chatterjee P.K. 2011. Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk. Energy36(7), pp.4063-4071. https://doi.org/10.1016/j.energy.2011.04.042
20. Ranjbar F. Chitsaz A. Mahmoudi S.S. Khalilarya S. and Rosen M.A. 2014. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell. Energy Conversion and Management87, pp.318-327. https://doi.org/10.1016/j.enconman.2014.07.014.
21. Mojaver P. Khalilarya S. and Chitsaz A. 2019. Multi-objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system. Applied Thermal Engineering156, pp.627-639. https://doi.org/10.1016/j.enconman.2014.07.014.
22. Mojaver P. Abbasalizadeh M. Khalilarya S. and Chitsaz A. 2020. Co-generation of electricity and heating using a SOFC-ScCO2 Brayton cycle-ORC integrated plant: investigation and multi-objective optimization. International Journal of Hydrogen Energy45(51), pp.27713-27729. https://doi.org/10.1016/j.ijhydene.2020.07.137
23. Mojaver P. Khalilarya S. and Chitsaz A., 2021. Combined systems based on OSOFC/HSOFC: Comparative analysis and multi‐objective optimization of power and emission. International Journal of Energy Research45(4), pp.5449-5469. https://doi.org/10.1002/er.6173