مدل‌سازی و شبیه‌سازی ۱۸ درجه ی آزادی دینامیک پرواز یک شبه‌حشره‌ی سنجاقک با در نظر گرفتن آیرودینامیک شبه‌پایا

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده‌ی مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران.

چکیده

در پژوهش حاضر، فرایند مدل‌سازی یک شبه‌حشره‌ی ‌سنجاقک ۱۸ درجه‌ی آزادی و با درنظرگرفتن آئرودینامیک شبه‌پایا ارائه شده است. ابتدا معادله‌های دینامیکی حرکت با استفاده از روش نیوتن– اویلر برای بدنه و چهار بال صلب و به‌صورت کامل استخراج شده‌اند. سپس پدیده‌های آئرودینامیکی ناپایا، شامل واماندگی به‌تأخیرافتاده، برا چرخشی و اینرسی جرم افزوده در قالب مدل شبه‌پایا به مدل دینامیکی اضافه شده‌اند. ساختار نهایی مدل، شامل نیروها و گشتاورهای متقابل بین اجزا، به‌منظور شبیه‌سازی غیرخطی دقیق و طراحی کنترل‌کننده توسعه یافته است. در پایان، با استفاده از مطالعه‌های تجربی، ضرایب و نیروهای آئرودینامیکی استخراج و مدل اعتبارسنجی شده و عملکرد پرنده در سناریوی پرواز شناور و دورزدن با دقت بررسی شده است. تلفیق دقیق دینامیک چندجسمی با مدل آئرودینامیک شبه‌پایا، وجه تمایز اصلی مطالعه‌ی پژوهشی حاضر محسوب می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Simulation of 18-Degree-of-Freedom Flight Dynamics of a Dragonfly-Inspired Micro Aerial Vehicle Considering Quasi-Steady Aerodynamics

نویسندگان [English]

  • Sobhan Toulabi
  • Afshin Banazadeh
Department of Aerospace Engineering, Sharif University of Technology
چکیده [English]

In this study, a comprehensive dynamic and aerodynamic model of a dragonfly-inspired flapping-wing system was developed to analyze the mechanisms of unsteady flight. Using a nonlinear 18-degree-of-freedom formulation based on the Newton–Euler equations, the coupled motion of the body and four independently actuated wings was simulated. Key unsteady aerodynamic effects—delayed stall, rotational lift, and added-mass inertia—were modeled and incorporated into the dynamics, while wake capture was omitted for simplicity. Simulation results showed strong agreement with experimental data, reproducing lift and drag characteristics across diverse flight conditions. The model also demonstrated stable hovering and agile turning maneuvers, confirming its capability to capture essential flight characteristics. Overall, the validated framework provides a reliable basis for future research on stability, control, and performance optimization of bio-inspired flapping-wing micro aerial vehicles.

کلیدواژه‌ها [English]

  • Dynamic modeling
  • flight simulation
  • quasi-steady aerodynamics
  • flapping wing dynamics
  • dragonfly-like insect
1. Xuan, H., Hu, J., Yu, Y. and Zhang, J., 2020. Recent progress in aerodynamic modeling methods for flapping flight. AIP Advances, 10, 2, pp.1-20. https://doi.org/10.1063/1.5130900
2. Osborne, M.F.M., 1951. Aerodynamics of flapping flight with application to insects. Journal of Experimental Biology, 28, 2, pp.221-245. https://doi.org/10.1242/jeb.28.2.221
3. Ruiz, C., Acosta, J.Á. and Ollero, A., 2022. Aerodynamic reduced-order Volterra model of an ornithopter under high-amplitude flapping. Aerospace Science and Technology, 121, pp.107331. https://doi.org/10.1016/j.ast.2022.107331
4. Singh, B., Ahmad, K.A., Murugaiah, M., Yidris, N., Basri, A.A. and Pai, R., 2024. Quasi-steady aerodynamic modeling and dynamic stability of mosquito-inspired flapping wing pico aerial vehicle. Frontiers In Robotics and AI, 11, pp.1362206. https://doi.org/10.3389/frobt.2024.1362206
5. Ryu, Y. and Chang, J.W., 2025. Effect of wingtip-curve on aerodynamic performance in flapping flexible wings: rectangular versus hawkmoth-like. Journal of Visualization, 28, 1, pp.39-57. https://doi.org/10.1007/s12650-024-01026-5
6 . Zhao, Z., Jiang, Z., Zhang, C. and Song, G., 2025. Modeling of flapping wing aerial vehicle using hybrid phase-functioned neural network based on flight data. Journal of Bionic Engineering, 22, 3, pp.1126-1142. https://doi.org/10.1007/s42235-025-00692-x
7. Lashgari, M. and Naghash, A., 2021. Modeling and linearization of longitudinal dynamics for a flapping wing micro aerial vehicle dragonfly-like with active rigid tail. Amirkabir Journal of Mechanical Engineering, 53, 6, pp.3445-3464. [In Persian]. https://doi.org/10.22060/mej.2020.18389.6808
8. Shams, S., Mirzavand Boroujeni, B., Mansoori, S.M. and Kazemi, M.R., 2018. Kinematic analysis of articulated flapping wings mechanisms considering nonlinear quasi-steady aerodynamic. Modares Mechanical Engineering, 17, 12, pp.87-97. [In Persian]. http://dorl.net/dor/20.1001.1.10275940.1396.17.12.17.9
Kwon, H.K. and Chang, J.W., 2025. Effects of shapes and kinematics of hovering flapping wings on aerodynamic forces and vortex structures. Scientific Reports, 15, 1, pp.5098. https://doi.org/10.1038/s41598-025-86113-9
10. Martín-Alcántara, A., Grau, P., Fernandez-Feria, R. and Ollero, A., 2019. A simple model for gliding and low-amplitude flapping flight of a bio-inspired UAV. In 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp.729-737. IEEE. https://doi.org/10.1109/ICUAS.2019.8798233
11. Wang, Siqi, Song, Bifeng, Chen, Ang, Fu, Qiang and Cui, Jin, 2022. Modeling and flapping vibration suppression of a novel tailless flapping wing micro air vehicle. Chinese Journal of Aeronautics, 35, 3, pp.309-328. https://doi.org/10.1016/j.cja.2021.08.030
12. Kawakami, K., Kaneko, S., Hong, G., Miyamoto, H. and Yoshimura, S., 2022. Fluid–structure interaction analysis of flexible flapping wing in the Martian environment. Acta Astronautica, 193, pp.138-151. https://doi.org/10.1016/j.actaastro.2022.01.001
13. Gao, H., Zhu, J., Sun, C., Li, Z.A. and Peng, Q., 2025. Visualized neural network-based vibration control for pigeon-like flexible flapping wings. ISA Transactions, 158, pp.374-383. https://doi.org/10.1016/j.isatra.2024.12.038
14. Mao, T., Guo, C. and Duan, B., 2025. An improved quasi-steady model capable of calculating flexible deformation for bird-sized flapping wings. Nonlinear Dynamics, 113, 6, pp.5591-5610. https://doi.org/10.1007/s11071-024-10570-6
15. Judi, A., Banazadeh, A. and Asghari, A., 2024. Activation of vibrational stabilization in insect-like flapping systems. International Journal of Modeling And Optimization, 14, 4, pp.142-148. https://doi.org/10.7763/IJMO.2024.V14.863
16. Zhong, S., Wang, S., Xu, W., Liu, J. and Pan, E., 2023. Autonomous flight control with different strategies applied during the complete flight cycle for flapping-wing flying robots. Science China Technological Sciences, 66, 11, pp.3343-3354. https://doi.org/10.1007/s11431-022-2452-6
17. Poshtan, J. and Leyci, –, 2021. Altitude cascade control of an avian-like flapping robot considering articulated wings and quasi-steady. Amirkabir Journal Of Mechanical Engineering, 53, 4, pp.2137-2154. [In Persian]. https://doi.org/10.22060/mej.2020.17937.6691
18. Huang, H., Chen, Z., He, W., Li, Q. and Niu, T., 2024. Aerodynamic analysis and flight control of a butterfly-inspired flapping-wing robot. IEEE Robotics and Automation Letters, 9, 11, pp.9677-9684. https://doi.org/10.1109/LRA.2024.3458591
19. Banazadeh, A. and Taymourtash, N., 2016. Adaptive attitude and position control of an insect-like flapping wing air vehicle. Nonlinear Dynamics, 85, 1, pp.47-66. https://doi.org/10.1007/s11071-016-2666-8
20. Kim, T., Hong, I., Im, S., Rho, S., Kim, M., Roh, Y., Kim, C., Park, J., Lim, D., Lee, D. and Lee, S., 2024. Wing-strain-based flight control of flapping-wing drones through reinforcement learning. Nature Machine Intelligence, 6, 9, pp.992-1005. https://doi.org/10.1038/s42256-024-00893-9
21. Yu, Y., Lu, Q. and Zhang, B., 2025. Reinforcement learning based recovery flight control for flapping-wing micro-aerial vehicles under extreme attitudes. International Journal of Advanced Robotic Systems, 22, 1, pp.17298806241303290. https://doi.org/10.1177/17298806241303290
22. He, W., Mu, X., Zhang, L. and Zou, Y., 2020. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA Journal of Automatica Sinica, 8, 1, pp.148-156. https://doi.org/10.1109/JAS.2020.1003417
23. Wenfu, X.U., Erzhen, P.A.N., Juntao, L.I.U., Yihong, L.I. and Han, Y.U.A.N., 2022. Flight control of a large-scale flapping-wing flying robotic bird: System development and flight experiment. Chinese Journal of Aeronautics, 35, 2, pp.235-249. https://doi.org/10.1016/j.cja.2021.03.009
24. Cai, X. and Liu, H., 2025. The fast flight stabilization strategy in flying insects. Theoretical and Applied Mechanics Letters, 5, pp.100599. https://doi.org/10.1016/j.taml.2025.100599
25. Zipfel, P.H., 2000. Modeling and simulation of aerospace vehicle dynamics. AIAA, pp.1-1.
26. Durán, J.C., Escareño, J.A., Etcheverry, G. and Rakotondrabe, M., 2016. Getting started with PEAs-based flapping-wing mechanisms for micro aerial systems. Actuators, 5(2), p.14. https://doi.org/10.3390/act5020014
27. Liang, W., Song, B., Sun, Z. and Yang, X., 2023. Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings. Chinese Journal of Aeronautics, 36(6), pp.63–91. https://doi.org/10.1016/j.cja.2023.03.031
28. Sane, S.P. and Dickinson, M.H., 2002. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205, 8, pp.1087-1096. https://doi.org/10.1242/jeb.205.8.1087
29. Pines, D.J. and Bohorquez, F., 2006. Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43, 2, pp.290-305. https://doi.org/10.2514/1.4922
30. Deng, X., Schenato, L., Wu, W.C. and Sastry, S.S., 2006. Flapping flight for biomimetic robotic insects: part I-system modeling. IEEE Transactions on Robotics, 22, 4, pp.776-788. https://doi.org/10.1109/TRO.2006.875480
31. Angelini, G., Muggiasca, S. and Belloli, M., 2023. A techno-economic analysis of a cargo ship using flettner rotors. Journal of Marine Science and Engineering, 11, 1, pp.229. https://doi.org/10.3390/jmse11010229
32. Dickinson, M.H., Lehmann, F.O. and Sane, S.P., 1999. Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), pp.1954-1960. https://doi.org/10.1126/science.284.5422.1954