1. Xuan, H., Hu, J., Yu, Y. and Zhang, J., 2020. Recent progress in aerodynamic modeling methods for flapping flight.
AIP Advances,
10, 2, pp.1-20.
https://doi.org/10.1063/1.5130900
3. Ruiz, C., Acosta, J.Á. and Ollero, A., 2022. Aerodynamic reduced-order Volterra model of an ornithopter under high-amplitude flapping.
Aerospace Science and Technology,
121, pp.107331.
https://doi.org/10.1016/j.ast.2022.107331
4. Singh, B., Ahmad, K.A., Murugaiah, M., Yidris, N., Basri, A.A. and Pai, R., 2024. Quasi-steady aerodynamic modeling and dynamic stability of mosquito-inspired flapping wing pico aerial vehicle.
Frontiers In Robotics and AI,
11, pp.1362206.
https://doi.org/10.3389/frobt.2024.1362206
5. Ryu, Y. and Chang, J.W., 2025. Effect of wingtip-curve on aerodynamic performance in flapping flexible wings: rectangular versus hawkmoth-like.
Journal of Visualization,
28, 1, pp.39-57.
https://doi.org/10.1007/s12650-024-01026-5
6 . Zhao, Z., Jiang, Z., Zhang, C. and Song, G., 2025. Modeling of flapping wing aerial vehicle using hybrid phase-functioned neural network based on flight data.
Journal of Bionic Engineering,
22, 3, pp.1126-1142.
https://doi.org/10.1007/s42235-025-00692-x
7. Lashgari, M. and Naghash, A., 2021. Modeling and linearization of longitudinal dynamics for a flapping wing micro aerial vehicle dragonfly-like with active rigid tail.
Amirkabir Journal of Mechanical Engineering,
53, 6, pp.3445-3464. [In Persian].
https://doi.org/10.22060/mej.2020.18389.6808
8. Shams, S., Mirzavand Boroujeni, B., Mansoori, S.M. and Kazemi, M.R., 2018. Kinematic analysis of articulated flapping wings mechanisms considering nonlinear quasi-steady aerodynamic.
Modares Mechanical Engineering,
17, 12, pp.87-97. [In Persian].
http://dorl.net/dor/20.1001.1.10275940.1396.17.12.17.9
Kwon, H.K. and Chang, J.W., 2025. Effects of shapes and kinematics of hovering flapping wings on aerodynamic forces and vortex structures.
Scientific Reports,
15, 1, pp.5098.
https://doi.org/10.1038/s41598-025-86113-9
10. Martín-Alcántara, A., Grau, P., Fernandez-Feria, R. and Ollero, A., 2019. A simple model for gliding and low-amplitude flapping flight of a bio-inspired UAV. In
2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp.729-737. IEEE.
https://doi.org/10.1109/ICUAS.2019.8798233
11. Wang, Siqi, Song, Bifeng, Chen, Ang, Fu, Qiang and Cui, Jin, 2022. Modeling and flapping vibration suppression of a novel tailless flapping wing micro air vehicle.
Chinese Journal of Aeronautics,
35, 3, pp.309-328.
https://doi.org/10.1016/j.cja.2021.08.030
12. Kawakami, K., Kaneko, S., Hong, G., Miyamoto, H. and Yoshimura, S., 2022. Fluid–structure interaction analysis of flexible flapping wing in the Martian environment.
Acta Astronautica,
193, pp.138-151.
https://doi.org/10.1016/j.actaastro.2022.01.001
13. Gao, H., Zhu, J., Sun, C., Li, Z.A. and Peng, Q., 2025. Visualized neural network-based vibration control for pigeon-like flexible flapping wings.
ISA Transactions,
158, pp.374-383.
https://doi.org/10.1016/j.isatra.2024.12.038
14. Mao, T., Guo, C. and Duan, B., 2025. An improved quasi-steady model capable of calculating flexible deformation for bird-sized flapping wings.
Nonlinear Dynamics,
113, 6, pp.5591-5610.
https://doi.org/10.1007/s11071-024-10570-6
15. Judi, A., Banazadeh, A. and Asghari, A., 2024. Activation of vibrational stabilization in insect-like flapping systems.
International Journal of Modeling And Optimization,
14, 4, pp.142-148.
https://doi.org/10.7763/IJMO.2024.V14.863
16. Zhong, S., Wang, S., Xu, W., Liu, J. and Pan, E., 2023. Autonomous flight control with different strategies applied during the complete flight cycle for flapping-wing flying robots.
Science China Technological Sciences,
66, 11, pp.3343-3354.
https://doi.org/10.1007/s11431-022-2452-6
17. Poshtan, J. and Leyci, –, 2021. Altitude cascade control of an avian-like flapping robot considering articulated wings and quasi-steady.
Amirkabir Journal Of Mechanical Engineering,
53, 4, pp.2137-2154. [In Persian].
https://doi.org/10.22060/mej.2020.17937.6691
18. Huang, H., Chen, Z., He, W., Li, Q. and Niu, T., 2024. Aerodynamic analysis and flight control of a butterfly-inspired flapping-wing robot.
IEEE Robotics and Automation Letters,
9, 11, pp.9677-9684.
https://doi.org/10.1109/LRA.2024.3458591
19. Banazadeh, A. and Taymourtash, N., 2016. Adaptive attitude and position control of an insect-like flapping wing air vehicle.
Nonlinear Dynamics,
85, 1, pp.47-66.
https://doi.org/10.1007/s11071-016-2666-8
20. Kim, T., Hong, I., Im, S., Rho, S., Kim, M., Roh, Y., Kim, C., Park, J., Lim, D., Lee, D. and Lee, S., 2024. Wing-strain-based flight control of flapping-wing drones through reinforcement learning.
Nature Machine Intelligence,
6, 9, pp.992-1005.
https://doi.org/10.1038/s42256-024-00893-9
21. Yu, Y., Lu, Q. and Zhang, B., 2025. Reinforcement learning based recovery flight control for flapping-wing micro-aerial vehicles under extreme attitudes.
International Journal of Advanced Robotic Systems,
22, 1, pp.17298806241303290.
https://doi.org/10.1177/17298806241303290
22. He, W., Mu, X., Zhang, L. and Zou, Y., 2020. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles.
IEEE/CAA Journal of Automatica Sinica,
8, 1, pp.148-156.
https://doi.org/10.1109/JAS.2020.1003417
23. Wenfu, X.U., Erzhen, P.A.N., Juntao, L.I.U., Yihong, L.I. and Han, Y.U.A.N., 2022. Flight control of a large-scale flapping-wing flying robotic bird: System development and flight experiment.
Chinese Journal of Aeronautics,
35, 2, pp.235-249.
https://doi.org/10.1016/j.cja.2021.03.009
25. Zipfel, P.H., 2000. Modeling and simulation of aerospace vehicle dynamics. AIAA, pp.1-1.
26. Durán, J.C., Escareño, J.A., Etcheverry, G. and Rakotondrabe, M., 2016. Getting started with PEAs-based flapping-wing mechanisms for micro aerial systems.
Actuators, 5(2), p.14.
https://doi.org/10.3390/act5020014
27. Liang, W., Song, B., Sun, Z. and Yang, X., 2023. Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings.
Chinese Journal of Aeronautics, 36(6), pp.63–91.
https://doi.org/10.1016/j.cja.2023.03.031
28. Sane, S.P. and Dickinson, M.H., 2002. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
Journal of Experimental Biology,
205, 8, pp.1087-1096.
https://doi.org/10.1242/jeb.205.8.1087
29. Pines, D.J. and Bohorquez, F., 2006. Challenges facing future micro-air-vehicle development.
Journal of Aircraft,
43, 2, pp.290-305.
https://doi.org/10.2514/1.4922
30. Deng, X., Schenato, L., Wu, W.C. and Sastry, S.S., 2006. Flapping flight for biomimetic robotic insects: part I-system modeling.
IEEE Transactions on Robotics,
22, 4, pp.776-788.
https://doi.org/10.1109/TRO.2006.875480
31. Angelini, G., Muggiasca, S. and Belloli, M., 2023. A techno-economic analysis of a cargo ship using flettner rotors.
Journal of Marine Science and Engineering,
11, 1, pp.229.
https://doi.org/10.3390/jmse11010229