بهینه سازی معادله ی کلبروک - وایت بر اساس داده‌های تجربی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده ی مهندسی هوافضا، دانشگاه هوایی شهید ستاری

چکیده

اصطکاک در توزیع سرعت، تنش برشی، لایه‌ی مرزی، افت انرژی و فرسایش نقش مهمی دارد. در افت فشار ضریب اصطکاک رابطه‌ی مستقیم با عدد رینولدز در جریان‌های آرام، توربولانسی و انتقالی از آرام به توربولانسی دارد. به دلیل کاربردهای گسترده‌ی آن، محاسبه‌ی دقیق روابط حاکم بر ضریب اصطکاک دارای اهمیت بسیار زیادی است. تلاش‌های فراوانی برای بهبود معروف‌ترین معادله‌ی ضریب اصطکاک یعنی معادله‌ی کلبروک در قرن گذشته و از دهه‌ی ۱۹۳۰ میلادی صورت پذیرفت، اما تطابق کاملی با داده‌های تجربی حاصل نشد. هدف این تحقیق بهبود معادله‌ی کلبروک و ارائه‌ی معادله‌یی با دقت بیشتر در نواحی رینولدزی گسترده‌تر و انطباق آن با داده‌های تجربی و آزمایشگاهی است و تلاش شده است تا با کم‌ترین تغییر در معادله‌ی کلبروک و بیشترین دقت با داده‌های تجربی محاسبات انجام شود. روش مورد استفاده در این تحقیق، بررسی خطا در روابط مختلف در تمامی نواحی رینولدزی است. در ۶۳٫۵\٪ از بازه‌های رینولدزی، معادله‌ی تحقیق از آخرین معادلات ارائه شده دقت بیشتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of the Colebrook-White Equation based on experimental data

نویسندگان [English]

  • S. Daryaei
  • M. Aelaei
D‌e‌p‌t. o‌f A‌e‌r‌o‌s‌p‌a‌c‌e E‌n‌g‌i‌n‌e‌e‌r‌i‌n‌g S‌h‌a‌h‌i‌d S‌a‌t‌t‌a‌r‌i A‌i‌r U‌n‌i‌v‌e‌r‌s‌i‌t‌y
چکیده [English]

Friction plays an important role in velocity distribution, shear stress, boundary layer, energy loss, and erosion. In the pressure drop, the friction factor has a direct relation with the Reynolds Number in smooth, turbulent, and transitional flows from the transition to the turbulence. Today, among engineers and researchers in fluid science, due to its wide applications, accurate calculation of the relations governing the friction factor is of high significance. Many attempts were made to improve the most famous friction factor equation, named Colebrook Equation, in the last century and since the , the experimental data have not been fully enriched with experimental data in various Reynolds regions. The purpose of the present study was to improve the Colebrook implicit equation, provide a more accurate equation in the wider Reynolds Region, and adapt it to valid experimental and laboratory data. Therefore, the current researcher tried to perform the calculations with the least changes to the equation of Colebrook explicit and with the greatest accuracy using the experimental data. The method used in this research utilizes graph engineering software, and the first-generation solution method such as one of the three conventional methods matches the approximations and adjusts the curves to the obtained data. The number of errors in different equations in all Reynolds regions, specifically, the last equations presented, was investigated and researched as the last accurate and practical equations presented. Then, with the obtained information, the present research equation was corrected and matched with experimental data. Finally, in order to prove the accuracy of the equation of the present study, the accuracy was compared with other equations and diagrams were drawn in all common Reynolds regions. The results indicate the advantage of using this research and its equation accuracy in specific Reynolds regions compared to other equations. Accuracy and adaptation are much higher than previous values in the widely used areas.

کلیدواژه‌ها [English]

  • Friction Factor
  • Colebrook equation
  • Reynolds Number
  • Moody Chart
1. Li, a. W. H. S. \United formula for the friction factor in the turbulent region of pipe ow", State Key of Water Resource and Hydro power Engineering Science, 11(5), p. 430072 (2016). 2. Weisbach, J.L., Lehrbuch Der Ingenieur-und Maschinen- Mechanik, Theoretische Mechanik: Druck und Verlag von Friedrich Vieweg und Sohn (1845). 3. Darcy, H., Recherches Experimentales Relatives au Mouvement de L'eau Dans Les Tuyaux, Mallet - Bachelier(1857). 4. Blasius, H., Das  Ahnlichkeitsgesetz bei Reibungsvorg angen in Flussigkeiten. Heft 131, Forschg.Arb. Ing, Wes., Berlin. (1913). 5. Karman, T.V. \Mechanische ahnlichkeit und turbulenz", Math.-Phys. Klasse (1930).6. Colebrook, a. C. M. W. C. F. \Experiments with uidfriction in roughened pipes", Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 161, pp. 367-381 (1937). 7. Brown, G.O. \The history of the Darcy-Weisbach equation for pipe ow resistance", Environmental and Water Resources History, pp. 34-43 (2003). 8. Niazkar, M. \Revisiting the estimation of colebrook friction factor: a comparison between arti cial intelligence models and C-W based explicit equations", KSCE Journal of Civil Engineering, 23(10), pp. 4311-4326 (2019). 9. Moody, L.F. \Friction factors for pipe ow", Trans. Asme, 66, pp. 671-684 (1944). 10. Swanson, C.J., Julian, B., Ihas, G.G. and et al. \Pipe ow measurements over a wide range of reynolds numbers using liquid helium and various gases", J. FluidMech, 461, pp. 51-60 (2002). 11. McKeon, B., Swanson, C., Zagarola, M. and et al. \Friction factors for smooth pipe ow", Journal of Fluid Mechanics, 511, pp. 41-44 (2004). 12. Basse, N.T. \Turbulence intensity and the friction factor for smooth-and rough-wall pipe ow", Fluids, 2, p. 30 (2017). 13. Nikuradse, J., Laws of Flow in Rough Pipes,Washington, DC, USA, (1933). 14. Yang, B.H. and Joseph, D.D. \Virtual nikuradse", Journal of Turbulence, 10, p. 11 (2009). 15. Beluco, A. and Schettini, E.B.C. \An improved expression for a classical type of explicit approximation of the Colebrook White equation with only one internal iteration", International Journal of Hydraulic Engineering, 5(1), pp. 19-23 (2016). 16. Sonnad, a. C. T. G. J. R. \Constraints for using lambert W function-based explicit Colebrook-White equation", Journal of Hydraulic Engineering, 130(9), pp. 929-931 (2004). 17. Joseph, D.D. and Yang, B.H. \Friction factor correlations for laminar, transition and turbulent ow in smooth pipes", Physica D: Nonlinear Phenomena, 239(14), pp. 1318-1328 (2010). 18. Brkic, D. \A note on explicit approximations to Colebrook's friction factor in rough pipes under highly turbulent cases", International Journal of Heat and Mass Transfer, 93, pp. 513-515 (2016). 19. Yldrm, G. "Computer-based analysis of explicit approximations to the implicit Colebrook-White equation in turbulent ow friction factor calculation", Advancesin Engineering Software, 40(11), pp. 1183-1190 (2009). 20. Winning, a. T. C. H. K. \Explicit friction factor accuracy and computational eciency for turbulent ow inpipes", Flow Turbulence and Combustion, 90(1), pp. 1- 27 (2013). 21. Eck Pecornik, B. \Technische Str mungslehre", Springer, p. 324 (1973). 22. Barr, D. and White, C. \Solutions of the Colebrook- White function for resistance to uniform turbulent ow",Proceedings of the Institution of Civil Engineers, 71(2), pp. 529-535 (1981). 23. Barr, D. \Technical note. new forms of equation for the correlation of pipe resistance data", Proceedings of the Institution of Civil Engineers, 53(2), pp. 383-390 (1972). 24. Churchill, S.W. \Empirical expressions for the shear stress in turbulent ow in commercial pipe", AIChE Journal, 19(2), pp. 375-376 (1973). 25. Jain, A.K. \Accurate explicit equation for friction factor", Journal of the Hydraulics Division, 102(5), pp. 674-677 (1976). 26. Swamee, a. A. K. J. P. K. \Explicit equations for pipe- ow problems", Journal of The Hydraulics Division, 102(5), pp. 657-664 (1976). 27. Haaland, S.E. \simple and explicit formulas for the friction factor in turbulent pipe ow", Journal of Fluids Engineering, 105(1), pp.89-90 (1983). 28. Shaikh, M.M., Massan, S.R. andWagan. A.I. \A new explicit approximation Colebrook's friction factor in rough pipes under highly turbulent cases", Int J Heat Mass Transfer, 88, pp. 538-543 (2015). 29. O or, U. and Alabi, S. \Performance evaluation of the explicit approximations of the implict colebrook equation", International Journal of Research in Engineering and Technology, 5, pp. 1-12 (2016). 30. Vatankhah, A.R. and Kouchakzadeh, S. \Discussion of \Turbulent ow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation" by Jagadeesh R. Sonnad and Chetan T. Goudar", Journal of Hydraulic Engineering, 134, pp. 1178-1187 (2008). 31. Azizi, N., Homayoon, R. and Hojjati, M.R. \Predicting the Colebrook-White friction factor in the pipe ow bynew explicit correlations", Journal of Fluids Engineering, 141(051201-051208) (2018). 32. Colebrook, C. \Friction factors for pipe ow", Inst. CivilEng, 11, p. 133 (1939). 33. Gallardo, A.O., Rojas, R.G. and Guerra, M.A. \New explicit correlation to compute the friction factor under turbulent ow in pipes", Brazilian Journal of Agricultural and Environmental Engineering, 25(7), pp. 439-445 (2021).