\شماره٪٪۱
Rebelo, R., Vila, N., Fangueiro, R., Carvalho, S. and Rana,
S., 2015. Influence of design parameters on themechanical behavior
and porosity of braided
fibrous stents. {\it Materials} \&
{\it Design}, {\it 86}, pp.237-247.
https://doi.org/10.1016/j.matdes.2015.07.051.
\شماره٪٪۲
Hansson, G.K., 2005. Inflammation, atherosclerosis, and coronary
artery disease. {\it New England Journal of Medicine}, {\it 352}(16), pp.
1685-1695.
https://doi.org/10.1056/NEJMra043430.
\شماره٪٪۳
Wang, T. and Butany, J., 2017. Pathogenesis of atherosclerosis.
{\it Diagnostic Histopathology}, {\it 23}(11), pp.473-478.
https://doi.org/10.1016/j.mpdhp.2017.11.009.
\شماره٪٪۴
Okereke, M.I., Khalaj, R., Tabriz, A.G. and Douroumis, D., 2021.
Development of 3D printable bioresorbable coronary artery stents:
A virtual testing approach. {\it Mechanics of Materials}, {\it 163}, p.104092.
https://doi.org/10.1016/j.mechmat.2021.104092.
\شماره٪٪۵
Chen, W., Habraken, T.C., Hennink, W.E. and Kok, R.J., 2015. Polymer-free
drug-eluting stents: An overview of coating strategies and comparison
with polymer-coated drug-eluting stents. {\it Bioconjugate chemistry},
{\it 26}(7), pp.1277-1288.
https://doi.org/10.1021/acs.bioconjchem.5b00192.
\شماره٪٪۶
Saraf, A.R. and Yadav, S.P., 2018. {\it Fundamentals of Bare-Metal
Stents}. In Functionalised Cardiovascular Stents, pp.27-44.
Woodhead Publishing.
https://doi.org/10.1016/B978-0-08-100496-8.00002-0.
\شماره٪٪۷
Park, J., Kim, J.K., Park, S.A. and Lee, D.W., 2019. Biodegradable
polymer material based smart stent: Wireless pressure sensor
and 3D printed stent. {\it Microelectronic Engineering}, {\it 206}, pp.1-5.
https://doi.org/10.1016/j.mee.2018.12.007.
\شماره٪٪۸
Hu, T., Yang, J., Cui, K., Rao, Q., Yin, T., Tan, L., Zhang,
Y., Li, Z. and Wang, G., 2015. Controlled slow-release drug-eluting
stents for the prevention of coronary restenosis: Recent progress
and future prospects. {\it ACS Applied Materials} \& {\it Interfaces},
{\it 7}(22),
pp.11695-11712.
https://doi.org/10.1021/acsami.5b01993.
\شماره٪٪۹
Yang, C.S., Wu, H.C., Sun, J.S., Hsiao, H.M. and Wang, T.W., 2013.
Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting
biodegradable stent. {\it ACS Applied Materials} \& {\it Interfaces},
{\it 5}(21),
pp.10985-10994.
https://doi.org/10.1021/am4032295.
\شماره٪٪۱۰
Roopmani, P., Satheesh, S., Raj, D.C. and Krishnan, U.M., 2019.
Development of dual drug eluting cardiovascular stent with
ultrathin flexible poly (l-lactide-co-caprolactone) coating.
{\it Acs Biomaterials Science} \& {\it Engineering}, {\it 5}(6), pp.2899-2915.
https://doi.org/10.1021/acsbiomaterials.9b00303.
\شماره٪٪۱۱
Guerra, A.J., Cano, P., Rabionet, M., Puig, T. and Ciurana,
J., 2018. 3D-printed PCL/PLA composite stents: Towards a new solution
to cardiovascular problems. {\it Materials}, {\it
11}(9), p.1679.
https://doi.org/10.3390/ma11091679.
\شماره٪٪۱۲
Wu, W., Yang, D.Z., Qi, M. and Wang, W.Q., 2007. An FEA method
to study flexibility of expanded coronary stents. {\it Journal of
Materials Processing Technology}, {\it 184}(1-3), pp.447-450.
https://doi.org/10.1016/j.jmatprotec.2006.12.010.
\شماره٪٪۱۳
Foin, N., Di Mario, C., Francis, D.P. and Davies, J.E., 2013. Stent
flexibility versus concertina effect: Mechanism of an unpleasant
trade-off in stent design and its implications for stent selection
in the cath-lab. {\it International Journal of Cardiology}, {\it 164}(3),
pp.259-261.
https://doi.org/10.1016/j.ijcard.2012.09.143.
\شماره٪٪۱۴
Ellis, S.G., Kereiakes, D.J., Metzger, D.C., Caputo, R.P.,
Rizik, D.G., Teirstein, P.S., Litt, M.R., Kini, A., Kabour, A.,
Marx, S.O. and Popma, J.J., 2015. Everolimus-eluting bioresorbable
scaffolds for coronary artery disease. {\it New England Journal of
Medicine}, {\it 373}(20), pp.1905-1915.
https://doi.org/10.1056/NEJMoa1509038.
\شماره٪٪۱۵
Li, Y., Wang, Y., Shen, Z., Miao, F., Wang, J., Sun, Y.,
Zhu, S., Zheng, Y. and Guan, S., 2020. A biodegradable magnesium alloy
vascular stent structure: Design, optimisation and evaluation. {\it Acta
Biomaterialia}, {\it 142}, pp.402-412.
https://doi.org/10.1016/j.actbio.2022.01.045.
\شماره٪٪۱۶
Li, Y., Wang, J., Sheng, K., Miao, F., Wang, Y., Zhang,
Y., Hou, R., Mei, D., Sun, Y., Zheng, Y. and Guan, S., 2022. Optimizing
structural design on biodegradable magnesium alloy vascular stent
for reducing strut thickness and raising radial strength. {\it Materials}
\& {\it Design}, {\it 220}, p.110843.
https://doi.org/10.1016/j.matdes.2022.110843.
\شماره٪٪۱۷
Tofail, S.A., Koumoulos, E.P., Bandyopadhyay, A., Bose,
S., O'Donoghue, L. and Charitidis, C., 2018. Additive manufacturing:
Scientific and technological challenges, market uptake and opportunities.
{\it Materials Today}, {\it 21}(1), pp.22-37.
https://doi.org/10.1016/j.mattod.2017.07.001.
\شماره٪٪۱۸
Wang, C., Zhang, L., Fang, Y. and Sun, W., 2020. Design, characterization,
and 3D printing of cardiovascular stents with zero Poisson's
ratio in longitudinal deformation. {\it Engineering},
{\it 7}(7), pp.979-990.
https://doi.org/10.1016/j.eng.2020.02.013.
\شماره٪٪۱۹
Li, H., Wang, X., Wei, Y., Liu, T., Gu, J., Li, Z., Wang,
M., Zhao, D., Qiao, A. and Liu, Y., 2017. Multi-objective optimizations
of biodegradable polymer stent structure and stent microinjection
molding process. {\it Polymers}, {\it 9}(1), p.20.
https://doi.org/10.3390/polym9010020.
\شماره٪٪۲۰
Shen, X., Deng, Y.Q., Ji, S., Zhu, H.F., Jiang, J.B. and
Gu, L.X., 2019. Bending analysis of stented coronary artery: The interaction
between stent and vessel. {\it Journal of Mechanics}, {\it 35}(4), pp.455-463.
https://doi.org/10.1017/jmech.2018.23.
\شماره٪٪۲۱
Azaouzi, M., Makradi, A. and Belouettar, S., 2013. Numerical
investigations of the structural behavior of a balloon expandable
stent design using finite element method. {\it Computational Materials
Science}, {\it 72}, pp.54-61.
https://doi.org/10.1016/j.commatsci.2013.01.031.
\شماره٪٪۲۲
Mori, K. and Saito, T., 2005. Effects of stent structure on stent
flexibility measurements. {\it Annals of Biomedical Engineering}, {\it 33}(6),
pp.733-742.
https://doi.org/10.1007/s10439-005-2807-6.
\شماره٪٪۲۳
Li, N., Zhang, H. and Ouyang, H., 2009. Shape optimization of
coronary artery stent based on a parametric model. {\it Finite Elements
in Analysis and Design}, {\it 45}(6-7), pp.468-475.
https://doi.org/10.1016/j.finel.2009.01.001.
\شماره٪٪۲۴
Grogan, J.A., Leen, S.B. and McHugh, P.E., 2012. Comparing coronary
stent material performance on a common geometric platform through
simulated bench testing. {\it Journal of the Mechanical Behavior
of Biomedical Materials}, {\it 12}, pp.129-138.
https://doi.org/10.1016/j.jmbbm.2012.02.013.
\شماره٪٪۲۵
Bobel, A.C., Petisco, S., Sarasua, J.R., Wang, W. and McHugh,
P.E., 2015. Computational bench testing to evaluate the short-term
mechanical performance of a polymeric stent. {\it Cardiovascular
Engineering and Technology}, {\it 6}(4), pp.519-532.
https://doi.org/10.1007/s13239-015-0235-9.
\شماره٪٪۲۶
Bonsignore, C., 2011. Open stent design. NDC,47533, pp.20-47.
https://doi.org/10.1080/136457002760273340.
\شماره٪٪۲۷
Ormiston, J.A. and Serruys, P.W., 2009. Bioabsorbable coronary
stents. {\it Circulation: Cardiovascular Interventions}, {\it 2}(3), pp.
255-260.
https://doi.org/10.1161/CIRCINTERVENTIONS.109.\\859173.
\شماره٪٪۲۸
Qiu, T.Y., Song, M. and Zhao, L.G., 2018. A computational study
of crimping and expansion of bioresorbable polymeric stents. {\it Mechanics
of Time-Dependent Materials}, {\it 22}(2), pp.273-290.\\
https://doi.org/10.1007/s11043-017-9371-y.