\شماره٪٪۱
Bergles, A., 1998. {\it Techniques To enhance Heat Transfer}. Handbook
of Heat Transfer, {\it 3}, pp.11.1-11.76.
\شماره٪٪۲
Tuckerman, D.B. and Pease, R.F.W., 1981. High-performance heat
sinking for VLSI. {\it IEEE Electron Device Letters}, {\it 2}, pp.126-129.
https://doi.org/10.1109/EDL.1981.25367.
\شماره٪٪۳
Gaikwad, S.M. and Nalawade, M., 2021. Investigation of heat transfer
and fluid flow characteristics in straight and zigzag microchannels
with water as working medium. {\it International Journal of Ambient
Energy}, pp.1-7. http://dx.doi.org/10.1080/01430750.2021.1924858.
\شماره٪٪۴
Kong, D., Jung, E., Kim, Y., Manepalli, V.V., Rah, K.J., Kim,
H.S., Hong, Y., Choi, H.G., Agonafer, D. and Lee, H., 2023. An
additively manufactured manifold-microchannel heat sink for high-heat
flux cooling. {\it International Journal of Mechanical Sciences}, {\it 248},
108228. https://doi.org/10.1016/j.ijmecsci.2023.108228.
\شماره٪٪۵
Spizzichino, M., Sinibaldi, G. and Romano, G.P., 2020. Experimental
investigation on fluid mechanics of micro-channel heat transfer
devices. {\it Experimental Thermal and Fluid Science}, {\it 118}, p.110141.
https://doi.org/10.1016/j.expthermflusci.2020.110141.
\شماره٪٪۶
Zeng, C., Song, Y., Zhou, X., Zhang, F., Chao, M., Jiao, M.,
Liu, M. and Gu, H., 2022. Optimization of the thermal-hydraulic
performance of zigzag-type microchannel heat exchangers using
asymmetric geometry. {\it Applied Thermal Engineering}, {\it 217}, p.119216.
https://doi.org/10.1016/j.applthermaleng.2022.119216.
\شماره٪٪۷
Peng, Y., Li, Z., Li, S., Cao, B., Wu, X. and Zhao, X., 2021. The
experimental study of the heat ransfer performance of a zigzag-serpentine
microchannel heat sink. {\it International Journal of Thermal Sciences},
{\it
163}, p.106831.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.\\009.
\شماره٪٪۸
Zhou, X., Zeng, C., Song, Y., Jiao, M., Zhang, F. and Liu, M.,
2022. Experimental study on heat transfer and flow resistance
performance of a microchannel heat exchanger with zigzag flow
channels. {\it Progress in Nuclear Energy}, {\it 147}, p.104190.
http://dx.doi.org/10.1016/j.pnucene.2022.104190.
\شماره٪٪۹
Dai, Z., Fletcher, D.F. and Haynes, B.S., 2015. Impact of tortuous
geometry on laminar flow heat transfer in microchannels. {\it International
Journal of Heat and Mass Transfer}, {\it 83}, pp.382-398.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.12.\\019.
\شماره٪٪۱۰
Chamkha, A.J., Molana, M., Rahnama, A. and Ghadami, F., 2018.
On the nanofluids applications in microchannels: A comprehensive
review. {\it Powder Technology}, {\it 332}, pp.287-322.
http://dx.doi.org/10.1016/j.powtec.2018.03.044.
\شماره٪٪۱۱
Balaji, T., Selvam, C., Lal, D.M. and Harish, S., 2020. Enhanced
heat transport behavior of micro channel heat sink with graphene
based nanofluids. {\it International Communications in Heat and Mass
Transfer}, {\it 117},
104716. https://doi.org/10.1016/j.icheatmasstransfer.2020.\\104716.
\شماره٪٪۱۲
Ding, M., Liu, C. and Rao, Z., 2019. Experimental investigation
on heat transfer characteristic of TiO2-H2O nanofluid in microchannel
for thermal energy storage. {\it Applied Thermal Engineering}, {\it 160},
114024. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.12.\\019.
\شماره٪٪۱۳
Li, C., Huang, J., Shang, Y. and Huang, H., 2020. Study on the
flow and heat dissipation of water-based alumina nanofluids in
microchannels. {\it Case Studies in Thermal Engineering}, {\it 22}, p.100746.
\شماره٪٪۱۴
Alshayji, A., Asadi, A. and Alarifi, I.M., 2020. On the heat transfer
effectiveness and pumping power assessment of a diamond-water
nanofluid based on thermophysical properties: An experimental
study. {\it Powder Technology}, {\it 373},
pp.397-410. https://doi.org/10.1016/j.powtec.2020.06.068.
\شماره٪٪۱۵
\c{S}im\c{s}ek, E., Coskun, S., Okutucu-\"{O}zyurt,
T. and Unalan, H.
E., 2018. Heat transfer enhancement by silver nanowire suspensions
in microchannel heat sinks. {\it International Journal of Thermal
Sciences}, {\it
123}, pp.1-13. https://doi.org/10.1016/j.ijthermalsci.2017.08.021.
\شماره٪٪۱۶
Bowers, J., Cao, H., Qiao, G., Li, Q., Zhang, G., Mura, E. and
Ding, Y., 2018. Flow and heat transfer behaviour of nanofluids
in microchannels. {\it Progress in Natural Science: Materials International},
{\it 28}, pp.225-234. http://dx.doi.org/10.1016/j.pnsc.2018.03.005.
\شماره٪٪۱۷
Sarafraz, M., Nikkhah, V., Nakhjavani, M. and Arya, A., 2017. Fouling
formation and thermal performance of aqueous carbon nanotube
nanofluid in a heat sink with rectangular parallel microchannel.
{\it Applied Thermal Engineering}, {\it 123}, pp.29-39.
https://doi.org/10.1016/j.applthermaleng.2017.05.056.
\شماره٪٪۱۸
Park, H.S. and Punch, J., 2008. Friction factor and heat transfer
in multiple microchannels with uniform flow distribution. {\it International
Journal of Heat and Mass Transfer}, {\it 51}, pp.4535-4543.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.\\02.009.
\شماره٪٪۱۹
Moffat, R.J. 1988. Describing the uncertainties in experimental
results. {\it Experimental Thermal and Fluid Science}, {\it 1}, pp.3-17.
https://doi.org/10.1016/j.csite.2020.100746.