طراحی کنترل‌کننده مود لغزشی مرتبه کسری برای کنترل وضعیت یک ماهواره دارای سازه های کوپل شده صلب - انعطاف پذیر با تابع تبدیل مرتبه کسری

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

چکیده

در این مقاله، مدل تابع تبدیل مرتبه کسری یک ماهواره با سازه‌های کوپل‌شده صلب-انعطاف‌پذیر مبنای کار قرار گرفته است. برای کنترل این سیستم دینامیکی از روش مقاوم کنترل مود لغزشی استفاده شده است. برای توابع تبدیل نمی‌توان به‌صورت مستقیم کنترل‌کننده مود لغزشی طراحی کرد. به همین دلیل، در ابتدا از روی مدل تابع تبدیل مرتبه کسری، یک تحقق فضای حالت مرتبه کسری به‌دست آورده و سپس کنترل‌کننده مود لغزشی مرتبه کسری طراحی شده است. در روند طراحی کنترل‌کننده مود لغزشی و اثبات پایداری آن از معادلات دینامیکی سیستم استفاده می‌شود و از آنجا که مدل فضای حالت از نوع مرتبه کسری است از سطح لغزش مرتبه صحیح نمی‌توان استفاده کرد؛ بنابراین، از سطح لغزش مرتبه کسری استفاده شده است. نتایج نشان می‌دهد که در شرایط وجود عدم‌قطعیت در هر کدام از چهار پارامتر سیستم، کنترل‌کننده قادر است تا سیگنالی تولید کند که در نهایت سیگنال مرجع به‌خوبی تعقیب گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fractional Order Sliding Mode Controller (FOSMC) Design for Attitude Control of a Satellite with Coupled Rigid–Flexible Structures Using Fractional Order Transfer Function

نویسندگان [English]

  • M. Fathi Jegarkandi
  • R. Safaei
Master of Science, Aerospace Engineering Department, Sharif University of Technology
چکیده [English]

One of the critical problems in controlling mechanical systems is the structural interactions. Obviously, all the bodies have elastic behavior, and rigidity is assumed to reduce the modeling complexity, which is not applicable to many situations. For example, gravity gradient booms and solar panels used in satellites have considerably large deflections relative to their basements. These such systems are recognized as Coupled Rigid-Flexible structures. In these cases, it is possible to consider the more flexible part of the structure as elastic and the other as rigid. With the development of fractional order calculus and more accurate modeling of physical phenomena, the problem of controlling these systems by considering the uncertainties in the system will become necessary and inevitable. In this paper, the fractional order transfer function model of a satellite with coupled rigid-flexible structures is used as the reference work of the research. The sliding mode control method, which is one of the robust control methods, has been used to control this dynamic system. It is not possible to design a sliding mode controller directly for a transfer function. For this reason, a fractional order pseudo-state space model is first obtained from the fractional order transfer function model. Then, a controller is designed for it. On the other hand, considering the dynamics of the system is used in the design process of the sliding mode controller and proving its stability. Since the state space model is fractional, it is clear that the integer order sliding surface cannot be used. Therefore, the fractional sliding surface has been used for this purpose. The results show that in the presence of considerable uncertainties in each of the four parameters of the dynamical system, and considering the effects of sensor noise and the saturation element for the control signal, this controller can overcome it and follow the reference signal.

کلیدواژه‌ها [English]

  • Fractional-order transfer function
  • Fractional order sliding mode control
  • Attitude control of satellite
  • Coupled Rigid–Flexible Structures
  • Uncertainty
1. Zhendong, H. and Jiazhen, H., 1999. Modeling and analysis of a coupled rigid-flexible system. Journal of Applied Mathematics and Mechanics, 20 (10), pp. 1167-1174. https://doi.org/10.1007/BF02460335. 2. Lu, Y. h., Zeng, J., Wu, P. b. and Guan, Q. h., 2009. Modeling of rigid-flexible coupling system dynamics for railway vehicles with flexible bogie frame. Fourth International Conference on Innovative Computing, Information and Control (ICICIC), Kaohsiung, Taiwan, pp. 1355-1360. https://doi.org/10.1109/ICICIC.2009.265. 3. Zhang, G., Lu, N. and Che, R., 2011. Dynamic analysis on rigid-flexible coupled multi-body system with a few flexible components. International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Xi'an, pp. 1010-1015. https://doi.org/10.1109/ICQR2MSE.2011.5976775. 4. Sun, G. and Zhu, Z. H., 2015. Fractional-order dynamics and control of rigid–flexible coupling space structures. Journal of Guidance, Control and Dynamics, 38 (7), pp. 1324-1330. https://doi.org/10.2514/1.G001046. 5. Taghirad. H., Fathi. M and Zamani. F., 2018. Robust H-infinity control, K. N. Toosi University of Technology Publication, 3th Edition. ]In Persian[ 6. Tavazoei, M. S. and Tavakoli, M., 2015. Fractional order systems and controllers, K. N. Toosi University of Technology Publication. ]In Persian[. 7. Valério, D., 2013. An introduction to fractional control. The Institution of Engineering and Technology (IET) Publication, London. 8. Delavari, H., Ghaderi, R., Ranjbar, A. and Momani, S., 2010. Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 15 (4), pp. 963-978. https://doi.org/10.1016/j.cnsns.2009.05.025. 9. Tang, Y., Zhang, X., Zhang, D., Zhao, G. and Guan, X., 2012. Fractional order sliding mode controller design for antilock braking systems, Neurocomputing, 111, pp. 122-130. https://doi.org/10.1016/j.neucom.2012.12.019. 10. Ullah, N., Shaoping, W., Khattak, M. I. and Shafi, M., 2015. Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and nonlinearities. Aerospace Science and Technology, 43, pp. 381-387. https://doi.org/10.1016/j.ast.2015.03.020. 11. Ebrahimkhani, S., 2016. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines. ISA Transactions, 63, pp. 343-354. https://doi.org/10.1016/j.isatra.2016.03.003. 12. Kamali, M., Farhadi, M. and Askari J., 2017. Fractional order sliding mode controller design for quadrotor system. Modares Mechanical Engineering, 17 (5), pp. 287-294. ]In Persian[ 13. Liu, S., Yan, B., Zhang, X., Liu, W. and Yan, J., 2022. Fractional-order sliding mode guidance law for intercepting hypersonic vehicles. Journal of Aerospace, 9 (2). https://doi.org/10.3390/aerospace9020053 14. Ullah, N., Mehmood, Y., Aslam, J., Wang, S. and Phoungthong, Kh., 2022. Fractional order adaptive robust formation control of multiple quad-rotor UAVs with parametric uncertainties and wind disturbances. Chinese Journal of Aeronautics. 35 (8), pp. 204-220. https://doi.org/10.1016/j.cja.2021.10.012. 15. Tavakoli, M. and Haeri, M., 2010. The minimal state space realization for a class of fractional order transfer functions. Society for Industrial and Applied Mathematics Journal on Control and Optimization, 48 (7), pp. 4317–4326. https://doi.org/10.1137/090753048. 16. Tavakoli, M., Haeri, M. and Tavazoei, M. S., 2011. Notes on the state space realizations of rational order transfer functions. IEEE Transactions on Circuits and Systems, 58 (5), pp. 1099-1108. https://doi.org/10.1109/TCSI.2010.2090568. 17. Tavazoei, M. S. and Tavakoli, M., 2013. Minimal realizations for some classes of fractional order transfer functions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3 (3), pp. 313-321. https://doi.org/10.1109/JETCAS.2013.2265798.