1. Tang, D., Yao, X., Jin, Y. and Pang, F., 2016. Acoustic radiation from shear deformable ring-stiffened laminated composite cylindrical shell submerged in flowing fluid. Appl. Ocean Res, 61, pp. 65-80. doi.org/10.1016/j.apor.2016.10.006
2. Guo, W., Li, T., Zhu, X., Miao, Y. and Zhang, G., 2017. Vibration and acoustic radiation of a finite cylindrical shell submerged at finite depth from the free surface. J Sound Vib, 393, pp. 338-352. doi.org/10.1016/j.jsv.2017.01.003
3. Wang, X., Chen, D., Xiong, Y., Jiang, Q. and Zuo, Y. 2018. Experiment and modeling of vibro-acoustic response of a stiffened submerged cylindrical shell with force and acoustic excitation. Results Phys, 11, pp. 315–324. doi.org/10.1016/j.rinp.2018.09.017
4. Jin, G., Mab, X., Wang. W. and Liu, Z., 2018. An energy-based formulation for vibro-acoustic analysis of submerged submarine hull structures. Ocean Eng, 164, pp. 402-413. doi.org/10.1016/j.oceaneng.2018.06.057
5. Sua, J., Lei, Z., Qu, Y. and Hu, H., 2018. Effects of non-axisymmetric structures on vibro-acoustic signatures of a submerged vessel subject to propeller forces. Appl. Acoust, 133, pp. 28-37. doi.org/10.1016/j.apacoust.2017.12.006
6. Xie, K., Chen, M., Zhang, L., Li., W. and Dong, W., 2019. A unified semi-analytic method for vibro-acoustic analysis of submerged shells of revolution. Ocean Eng, 189, pp. 1-16. doi.org/10.1016/j.oceaneng.2019.106345
7. Zhao, K., Fan, J., Wang, B. and Tang, W., 2020. Analytical and experimental study of the vibro-acoustic behavior of a semi-submerged finite cylindrical shell. J Sound Vib, 482, pp. 1-20. doi.org/10.1016/j.jsv.2020.115466
8. Pan, C., Sun, X. and Zhang, Y., 2020. Vibro-acoustic analysis of submerged ring-stiffened cylindrical shells based on a symplectic wave-based method. Thin Wall Struct, 150, pp. 1-15. doi.org/10.1016/j.tws.2020.106698
9. Marsick, A., Sharma, GS., Eggler, D., Maxit, L., Meyer, V. and Kessissoglou, N., 2021. On the vibro-acoustic response of a cylindrical shell submerged near a free sea surface. J Sound Vib, 511, pp. 1–15. doi.org/10.1016/j.jsv.2021.116359
10. Yang, H. and Seong, W., 2021. Acoustic radiation efficiency of a submerged periodic ring-stiffened cylindrical shell with finite vibration loading. Appl. Acoust, 171, pp. 1-8. doi.org/10.1016/j.apacoust.2020.107664
11. Zhang, S., Li, T., Zhu, X., Yin, C. and Li, Q., 2022. Far field acoustic radiation and vibration analysis of combined shells submerged at finite depth from free surface. Ocean Eng, 252, pp. 1–14. doi.org/10.1016/j.oceaneng.2022.111198
12. Jia, W., Chen, M., Xie, K. and Dong, W., 2022. Experimental and analytical investigations on vibro-acoustic characteristics of a submerged submarine hull coupled with multiple inner substructures. Ocean Eng, 259, pp. 1-20. doi.org/10.1016/j.oceaneng.2022.111960
13. Jia, W., Chen, M., Zhou, Z. and Xie, K., 2022. Effects of non-axisymmetric internal structures on vibro-acoustic characteristics of a submerged cylindrical shell using wavenumber analysis. Thin Wall Struct, 171, pp. 883-899. doi.org/10.1016/j.tws.2021.108758
14. Gao, C., Zhang, H., Li, H., Pang, F. and Wang, H., 2022. Numerical and experimental investigation of vibro-acoustic characteristics of a submerged stiffened cylindrical shell excited by a mechanical force. Ocean Eng, 249, pp. 112-128. doi.org/10.1016/j.oceaneng.2022.110913
15. Pan, C. and Zhang, Y., 2022. Coupled vibro-acoustic analysis of submerged double cylindrical shells with stringers, rings, and annular plates in a symplectic duality system. Thin Wall Struct, 171, pp. 1–16. doi.org/10.1016/j.tws.2021.108671
16. Qu, Y., Zhang, W., Peng, Z. and Meng, G., 2019. Nonlinear structural and acoustic responses of three-dimensional elastic cylindrical shells with internal mass-spring systems. Appl. Acoust, 149, pp.143-155. doi.org/10.1016/j.apacoust.2019.01.009
17. Qu, Y., Xie, F. and Meng, G., 2019. Nonlinear dynamic and acoustic analysis of orthogonally stiffened composite laminated cylindrical shells containing piecewise isolators. J Sound Vib, 456, pp. 199–220. doi.org/10.1016/j.jsv.2019.05.023
18. Orafa, A.H., Jalili, M.M. and Fotuhi, A.R., 2021. Nonlinear vibro-acoustic behavior of cylindrical shell under primary resonances. Int J Non Linear Mech, 130, pp. 1-21. doi.org/10.1016/j.ijnonlinmec.2021.103682
19. Orafa, A.H., Jalili, M.M. and Fotuhi, A.R., 2023. Nonlinear analysis of sound transmission loss through cylindrical shell considering companion modes. Int Journal of Vibration and Control, 130, 1-21. https://doi.org/10.1177/10775463231203442
20. Zou, M.S., Jiang, L.W. and Tang, H.C., 2022. Computational method of underwater acoustic radiation from a spherical shell coupled with nonlinear systems. J Sound Vib, 533, pp. 1–21. doi.org/10.1016/j.jsv.2022.117020
21. Amabili, M., Pellicano, F. and Paidoussis, M.P., 1998. Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid. J Sound Vib, 12, pp. 883-918. doi.org/10.1006/jfls.1998.0173
22. Dowell, E.H. and Ventres, C.S., 1968. Modal equations for the nonlinear flexural vibrations of a cylindrical shell. International Journal of Solids and Structures, 4, pp. 975–991. doi.org/10.1016/0020-7683(68)90017-6
23. Daneshjou, K., Talebitooti, R. and Tarkashvand, A., 2016. Analysis of sound transmission loss through thick-walled cylindrical shell using three-dimensional elasticity theory. Int J Mech Sci, 106, pp. 286-296. doi.org/10.1016/j.ijmecsci.2015.12.019
24. White, F. M., 2011. Fluid Mechanics, 7th Edn., McGraw- Hill, New York, USA.
25. Linge, S. and Langtangen, H.P., 2010. Programming for Computations – MATLAB/Octave, 1st Edn., Springer, Heidelberg, Germany.
26. Talebitooti, R., Gohari, H.D. and Zarastvand, M.R., 2017. Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating non-dominated sorting genetic algorithm. Aerosp. Sci. Technol, 69, pp. 269–280. doi.org/10.1016/j.ast.2017.06.008
27. Karagiozis, K.N., Amabili, M., Paidoussis, M.P. and Misra A.K., 2005. Nonlinear vibrations of fluid-filled clamped circular cylindrical shells. Journal of Fluids and Structures, 21, pp. 579–595. doi.org/10.1016/j.jfluidstructs.2005.07.020
28. Oliazadeh, P., Farshidianfar, A. and Crocker, M.J., 2019. Study of sound transmission through single-and double-walled plates with absorbing material: Experimental and analytical investigation. Applied Acoustics, 145, pp. 7-24. doi.org/10.1016/j.apacoust.2018.09.014