1. Peng, Z., Zhao, H. & Li, X., 2021. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality.
International Journal of Plasticity, 145, pp. 103057.
https://doi.org/10.1016/j.ijplas.2021.103057
2. Yu, R., Li, X., Yue, Z., Li, A., Zhao, Z., Wang, X., Zhou, H. & Lu, T. J., 2022. Stress state sensitivity for plastic flow and ductile fracture of l907a low-alloy marine steel: From tension to shear.
Materials Science and Engineering: A, 835, pp. 142689.
https://doi.org/10.1016/j.msea.2022.142689
3. Kubík, P., Šebek, F., Hůlka, J. & Petruška, J., 2016. Calibration of ductile fracture criteria at negative stress triaxiality.
International Journal of Mechanical Sciences, 108, pp. 90-103.
https://doi.org/10.1016/j.ijmecsci.2016.02.001
4. Wang, C., Liu, X.-g., Gui, J.-t., Xu, Z.-f. & Guo, B.-f., 2019. Influence of inclusions on matrix deformation and fracture behavior based on gurson–tvergaard–needleman damage model.
Materials Science and Engineering: A, 756, pp. 405-416.
https://doi.org/10.1016/j.msea.2019.04.056
6. Li, W., Jing, Y., Zhou, T. & Xing, G., 2022. A new ductile fracture model for structural metals considering effects of stress state, strain hardening and micro-void shape.
Thin-Walled Structures, 176, pp. 109280.
https://doi.org/10.1016/j.tws.2022.109280
8. Freudenthal, A. M., 1950. The inelastic behavior of engineering materials and structures. John Wiley & Sons, Inc.
9. Cockcroft, M., 1968. Ductility and workability of metals. of Metals, 96, pp. 2444.
10. Li, R., Zheng, Z., Zhan, M., Zhang, H., Cui, X. & Lei, Y., 2022. Fracture prediction for metal sheet deformation under different stress states with uncoupled ductile fracture criteria.
Journal of Manufacturing Processes, 73, pp. 531-543.
https://doi.org/10.1016/j.jmapro.2021.11.023
11. Bridgman, P. W. 1964. Studies in large plastic flow and fracture: With special emphasis on the effects of hydrostatic pressure, Harvard University Press.
13. Zheng, M., Hu, C., Luo, Z. & Zheng, X., 1993. Further study of the new damage model by negative stress triaxiality.
International journal of fracture, 63, pp. R15-R19.
https://doi.org/10.1007/BF00053322
15. Lou, Y., Yoon, J. W. & Huh, H., 2014. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality.
International Journal of plasticity, 54, pp. 56-80.
https://doi.org/10.1016/j.ijplas.2013.08.006
16. Brünig, M., Gerke, S. & Schmidt, M., 2018. Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations.
International Journal of Plasticity, 102, pp. 70-82.
https://doi.org/10.1016/j.ijplas.2017.12.003
17 . Ganjiani, M., 2020. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and lode angle.
European Journal of Mechanics-A/Solids, 84, pp. 104048.
https://doi.org/10.1016/j.euromechsol.2020.104048
19. Hong, T., Ding, F., Chen, F., Zhang, H., Zeng, Q. & Wang, J., 2023. Study on the fracture behaviour of 6061 aluminum alloy extruded tube during different stress conditions.
Crystals, 13, pp. 489.
https://doi.org/10.3390/cryst13030489
20. Liu, H., Jin, T., Su, B., Qiu, J. & Shu, X., 2024. Deformation responses and fracture behaviors of aa6061 under different stress triaxialities.
Advanced Engineering Materials, pp. 2301805.
https://doi.org/10.1002/adem.202301805
21. Guo, X., Zong, S., Zhang, J. & Fang, Y., 2023. Modified plasticity constitutive model for extruded aluminum alloys.
Journal of Building Engineering, 73, pp. 106717.
https://doi.org/10.1016/j.jobe.2023.106717
22. Haskul, M. & Arslan, E., 2025. Fracture initiation in aluminum alloys under multiaxial loading at various low strain rates.
Metals, 15, pp. 785.
https://doi.org/10.3390/met15070785
23. González, Á., Celentano, D., Cruchaga, M. & Ponthot, J.-P., 2024. The triaxiality effect on damage evolution in al-2024 tensile samples.
Metals, 14, pp. 1103.
https://doi.org/10.3390/met14101103
25. Liu, B., Chang, M., Ren, Y., Dong, Y., Zhou, H. & Zhao, S., 2025. Parameter modification of ti6al4v df2012 ductile fracture model under wide range strain rate and analysis based on micro fracture mechanism.
Engineering Fracture Mechanics, pp. 111446.
https://doi.org/10.1016/j.engfracmech.2025.111446
26. Wang, H., Jia, W., Ma, L., Huang, Z., Zhang, J., Ning, F. & Lei, J., 2025. Fracture behavior of az31 magnesium alloy under continuously variable stress triaxiality.
Engineering Failure Analysis, 169, pp. 109177.
https://doi.org/10.1016/j.engfailanal.2024.109177
27. Cheng, X., Wang, R., Zhou, Z., Yang, Y., Chen, X., Wu, H., Chen, X. & Xu, W., 2025. Characterization of uncoupled ductile fracture criteria for 0cr17ni4cu4nb stainless steel under different stress states.
Journal of Materials Research and Technology, 36, pp. 5985-6003.
https://doi.org/10.1016/j.jmrt.2025.04.225