تحلیل تجربی و عددی تأثیر فشار هیدرواستاتیک در شکست نرم آلومینیوم 6-T6061

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده‌ی مهندسی مکانیک، دانشگاه تهران، تهران.

چکیده

در نوشتار حاضر از آزمون‌های تجربی و شبیه‌سازی عددی برای مطالعه‌ی سه‌محوره‌ی تنش، پارامتر زاویه‌ی لود، و تأثیر آن‌ها در رفتار شکست نرم آلومینیوم 6T-6061 استفاده ‌شده است. برای مطالعه‌ی مقادیر سه‌محوره‌ی تنش منفی، به‌جای انجام آزمون دومحوره، از آزمون‌های تک‌محوره‌ی کششی و فشاری بر روی هندسه‌های خاص استفاده شده است؛ که شامل: نمونه‌ی دمبلی و نمونه‌های مستطیلی حاوی حفره‌ی بیضوی با انحنا بوده‌اند. مقادیر سه‌‌محوره‌ی تنش منفی در بازه‌ی 355/0- تا 555/0- به‌دست آمده‌اند. با مقایسه‌ی نتایج آزمون‌های تجربی و شبیه‌سازی، می‌توان نتیجه گرفت که هر دو روش مقادیر کرنش شکست، مطابقت یکسانی را پیش‌بینی می‌کنند. براساس کانتورهای آسیب، ناحیه‌ای که شکست در آن آغاز شده است، با نواحی دارای بیشترین کرنش خمیری هم‌پوشانی داشته است، هر چند مقدار آن تحت تأثیر مقدار تنش سه‌محوره و زاویه‌ی لود بوده است. براساس داده‌های به‌دست‌آمده مشاهده شده است که در تنش سه‌محوره‌های مثبت، کرنش شکست ابتدا افزایش و سپس کاهش یافته است، در حالی ‌که در تنش سه‌محوره‌های منفی، این روند برعکس بوده و کرنش شکست، ابتدا کاهش و سپس افزایش پیدا کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical Analysis of Hydrostatic Pressure in Ductile Fracture of AL-6061T6

نویسندگان [English]

  • Mohsen Mansouri
  • Mehdi Ganjiani
Faculty of Mechanical Engineering, University of Tehran, Iran.
چکیده [English]

This study investigates the effects of stress triaxiality and the Lode angle parameter on the ductile fracture behavior of aluminum alloy 6061-T6 using experimental tests and numerical simulations. To analyze negative triaxiality conditions, compression tests were performed on specially designed specimens, including a standard dog-bone and rectangular samples with elliptical holes of varying curvature. The obtained negative triaxiality values ranged from −0.355 to −0.555. A good agreement between experimental and numerical results confirms the reliability of the adopted approach. The fracture initiation zones coincide with regions of maximum plastic strain, strongly influenced by triaxiality and Lode angle. The results indicate that fracture strain depends nonlinearly on triaxiality: for positive triaxiality it first increases then decreases, while the reverse trend is observed under negative triaxiality. These findings enhance the understanding of how stress-state parameters influence ductile fracture mechanisms and can be applied to improve the design and durability of metallic components in engineering applications.

کلیدواژه‌ها [English]

  • Stress triaxiality
  • fracture strain
  • normalized lode angle
  • ductile fracture
1. Peng, Z., Zhao, H. & Li, X., 2021. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality. International Journal of Plasticity, 145, pp. 103057. https://doi.org/10.1016/j.ijplas.2021.103057
2. Yu, R., Li, X., Yue, Z., Li, A., Zhao, Z., Wang, X., Zhou, H. & Lu, T. J., 2022. Stress state sensitivity for plastic flow and ductile fracture of l907a low-alloy marine steel: From tension to shear. Materials Science and Engineering: A, 835, pp. 142689.https://doi.org/10.1016/j.msea.2022.142689
3. Kubík, P., Šebek, F., Hůlka, J. & Petruška, J., 2016. Calibration of ductile fracture criteria at negative stress triaxiality. International Journal of Mechanical Sciences, 108, pp. 90-103.  https://doi.org/10.1016/j.ijmecsci.2016.02.001
4. Wang, C., Liu, X.-g., Gui, J.-t., Xu, Z.-f. & Guo, B.-f., 2019. Influence of inclusions on matrix deformation and fracture behavior based on gurson–tvergaard–needleman damage model. Materials Science and Engineering: A, 756, pp. 405-416. https://doi.org/10.1016/j.msea.2019.04.056
5. Lou, Y. & Yoon, J. W., 2017. Anisotropic ductile fracture criterion based on linear transformation. International Journal of Plasticity, 93, pp. 3-25.  https://doi.org/10.1016/j.ijplas.2017.04.008
6. Li, W., Jing, Y., Zhou, T. & Xing, G., 2022. A new ductile fracture model for structural metals considering effects of stress state, strain hardening and micro-void shape. Thin-Walled Structures, 176, pp. 109280.     https://doi.org/10.1016/j.tws.2022.109280
7. Torki, M. & Benzerga, A. A., 2022. Ductile fracture in plane stress. Journal of Applied Mechanics, 89, pp. 011001.     https://doi.org/10.1115/1.4052106
8. Freudenthal, A. M., 1950. The inelastic behavior of engineering materials and structures. John Wiley & Sons, Inc.
9. Cockcroft, M., 1968. Ductility and workability of metals. of Metals, 96, pp. 2444.
10. Li, R., Zheng, Z., Zhan, M., Zhang, H., Cui, X. & Lei, Y., 2022. Fracture prediction for metal sheet deformation under different stress states with uncoupled ductile fracture criteria. Journal of Manufacturing Processes, 73, pp. 531-543.     https://doi.org/10.1016/j.jmapro.2021.11.023
11. Bridgman, P. W. 1964. Studies in large plastic flow and fracture: With special emphasis on the effects of hydrostatic pressure, Harvard University Press.
12. Bao, Y. & Wierzbicki, T., 2005. On the cut-off value of negative triaxiality for fracture. Engineering fracture mechanics, 72, pp. 1049-1069.  https://doi.org/10.1016/j.engfracmech.2004.07.011
13. Zheng, M., Hu, C., Luo, Z. & Zheng, X., 1993. Further study of the new damage model by negative stress triaxiality. International journal of fracture, 63, pp. R15-R19.  https://doi.org/10.1007/BF00053322
14. Khan, A. S. & Liu, H., 2012. A new approach for ductile fracture prediction on al 2024-t351 alloy. International Journal of Plasticity, 35, pp. 1-12.  https://doi.org/10.1016/j.ijplas.2012.01.003
15. Lou, Y., Yoon, J. W. & Huh, H., 2014. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. International Journal of plasticity, 54, pp. 56-80.  https://doi.org/10.1016/j.ijplas.2013.08.006
16. Brünig, M., Gerke, S. & Schmidt, M., 2018. Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations. International Journal of Plasticity, 102, pp. 70-82.   https://doi.org/10.1016/j.ijplas.2017.12.003
17 . Ganjiani, M., 2020. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and lode angle. European Journal of Mechanics-A/Solids, 84, pp. 104048.     https://doi.org/10.1016/j.euromechsol.2020.104048
18. Wang, B., Xiao, X., Astakhov, V. P. & Liu, Z., 2019. The effects of stress triaxiality and strain rate on the fracture strain of ti6al4v. Engineering Fracture Mechanics, 219, pp. 106627. https://doi.org/10.1016/j.engfracmech.2019.106627
19. Hong, T., Ding, F., Chen, F., Zhang, H., Zeng, Q. & Wang, J., 2023. Study on the fracture behaviour of 6061 aluminum alloy extruded tube during different stress conditions. Crystals, 13, pp. 489. https://doi.org/10.3390/cryst13030489
20. Liu, H., Jin, T., Su, B., Qiu, J. & Shu, X., 2024. Deformation responses and fracture behaviors of aa6061 under different stress triaxialities. Advanced Engineering Materials, pp. 2301805. https://doi.org/10.1002/adem.202301805
21. Guo, X., Zong, S., Zhang, J. & Fang, Y., 2023. Modified plasticity constitutive model for extruded aluminum alloys. Journal of Building Engineering, 73, pp. 106717. https://doi.org/10.1016/j.jobe.2023.106717
22. Haskul, M. & Arslan, E., 2025. Fracture initiation in aluminum alloys under multiaxial loading at various low strain rates. Metals, 15, pp. 785. https://doi.org/10.3390/met15070785
23. González, Á., Celentano, D., Cruchaga, M. & Ponthot, J.-P., 2024. The triaxiality effect on damage evolution in al-2024 tensile samples. Metals, 14, pp. 1103. https://doi.org/10.3390/met14101103
24. Feng, R., Chen, M. & Xie, L., 2024. Constitutive relationship and fracture mechanism for wide stress triaxiality of titanium alloy. Engineering Fracture Mechanics, 295, pp. 109804. https://doi.org/10.1016/j.engfracmech.2023.109804
25. Liu, B., Chang, M., Ren, Y., Dong, Y., Zhou, H. & Zhao, S., 2025. Parameter modification of ti6al4v df2012 ductile fracture model under wide range strain rate and analysis based on micro fracture mechanism. Engineering Fracture Mechanics, pp. 111446. https://doi.org/10.1016/j.engfracmech.2025.111446
26. Wang, H., Jia, W., Ma, L., Huang, Z., Zhang, J., Ning, F. & Lei, J., 2025. Fracture behavior of az31 magnesium alloy under continuously variable stress triaxiality. Engineering Failure Analysis, 169, pp. 109177.     https://doi.org/10.1016/j.engfailanal.2024.109177
27. Cheng, X., Wang, R., Zhou, Z., Yang, Y., Chen, X., Wu, H., Chen, X. & Xu, W., 2025. Characterization of uncoupled ductile fracture criteria for 0cr17ni4cu4nb stainless steel under different stress states. Journal of Materials Research and Technology, 36, pp. 5985-6003.  https://doi.org/10.1016/j.jmrt.2025.04.225
28.Bai, Y. & Wierzbicki, T., 2010. Application of extended mohr–coulomb criterion to ductile fracture. International journal of fracture, 161, pp. 1-20.  https://doi.org/10.1007/s10704-009-9422-8