3. Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R.X., Kurfess, T. and Guzzo, J.A., 2017. A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing.
Journal of Manufacturing Systems,
43, pp.25-34.
https://doi.org/10.1016/j.jmsy.2017.02.011
4. Xenakis, A., Karageorgos, A., Lallas, E., Chis, A.E. and González-Vélez, H., 2019. Towards distributed IoT/cloud based fault detection and maintenance in industrial automation.
Procedia Computer Science,
151, pp.683-690.
https://doi.org/10.1016/j.procs.2019.04.091.
5. Park, D., Kim, S., An, Y. and Jung, J.Y., 2018. LiReD: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks.
Sensors,
18(7), p.2110.
https://doi.org/10.3390/s18072110.
6. Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L., 2016. Edge computing: Vision and challenges.
IEEE internet of things journal,
3(5), pp.637-646.
https://doi.org/10.1109/JIOT.2016.2579198.
7. Qian, G., Lu, S., Pan, D., Tang, H., Liu, Y. and Wang, Q., 2019. Edge computing: A promising framework for real-time fault diagnosis and dynamic control of rotating machines using multi-sensor data.
IEEE Sensors Journal,
19(11), pp.4211-4220.
https://doi.org/10.1109/JSEN.2019.2899396.
8. Huang, H., Yang, L., Wang, Y., Xu, X. and Lu, Y., 2021. Digital twin-driven online anomaly detection for an automation system based on edge intelligence.
Journal of Manufacturing Systems,
59, pp.138-150.
https://doi.org/10.1016/j.jmsy.2021.02.010.
9. Yang, H., Mathew, J. and Ma, L., 2002. Intelligent diagnosis of rotating machinery faults-a review. InProceedings of the 3rd Asia-Pacific Conference on Systems Integrity and Maintenance, pp. 385-392. Queensland University of Technology Press.
11. Maasoum, S.M.H., Mostafavi, A. and Sadighi, A., 2020, December. An autoencoder-based algorithm for fault detection of rotating machines, suitable for online learning and standalone applications.
In2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1-6. IEEE.
https://doi.org/10.1109/ICSPIS51611.2020.9349574.
12. Ahmad, S., Styp-Rekowski, K., Nedelkoski, S. and Kao, O., 2020, December. Autoencoder-based condition monitoring and anomaly detection method for rotating machines. In
2020 IEEE International Conference on Big Data (Big Data), pp. 4093-4102. IEEE.
https://doi.org/10.1109/BigData50022.2020.9378015.
18. Ren, H., Anicic, D. and Runkler, T.A., 2021, July. Tinyol: Tinyml with online-learning on microcontrollers.
In2021 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE.
https://doi.org/10.1109/IJCNN52387.2021.9533927
19. Tandon, N. and Choudhury, A., 1999. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings.
Tribology International,
32(8), pp.469-480.
https://doi.org/10.1016/S0301-679X(99)00077-8.
20. Williams, T., Ribadeneira, X., Billington, S. and Kurfess, T., 2001. Rolling element bearing diagnostics in run-to-failure lifetime testing.
Mechanical Systems and Signal Processing,
15(5), pp.979-993.
https://doi.org/10.1006/mssp.2001.1418.
21. Xia, Z., Xia, S., Wan, L. and Cai, S., 2012. Spectral regression based fault feature extraction for bearing accelerometer sensor signals.
Sensors,
12(10), pp.13694-13719.
https://doi.org/10.3390/s121013694.
22. Goumas, S.K., Zervakis, M.E. and Stavrakakis, G.S., 2002. Classification of washing machines vibration signals using discrete wavelet analysis for feature extraction.
IEEE Transactions on Instrumentation and Measurement,
51(3), pp.497-508.
https://doi.org/10.1109/TIM.2002.1017721.