2. Han, Z., Ma, Q., Fang, Y., Hua, L., Jin, C. and Huang, J. Progress and innovations of ice slurry generation based on scraped-surface method. IOP Publishing, p. 042021.
https://doi.org/10.1088/1742-6596/1550/4/042021
4. Hirochi, T., Maeda, Y., Yamada, S., Shirakashi, M., Hattori, M. and Saito, A., 2004. Flow patterns of ice/water slurry in horizontal pipes.
J. Fluids Eng.,
126(3), pp. 436-441.
https://doi.org/10.1115/1.1760541
5. Guan, X., Xu, Q., Yang, N. and Nigam, K.D., 2021. Hydrodynamics in bubble columns with helically-finned tube Internals: Experiments and CFD-PBM simulation.
Chemical engineering science,
240, pp. 116674.
https://doi.org/10.1016/j.ces.2021.116674
6. Gong, H., Li, W., Zhang, X., Peng, Y., Yu, B. and Mou, Y., 2021. Effects of droplet dynamic characteristics on the separation performance of a demulsification and dewatering device coupling electric and centrifugal fields.
Separation and Purification Technology,
257, pp. 117905.
https://doi.org/10.1016/j.seppur.2020.117905
7. Song, G., Li, Y., Wang, W., Jiang, K., Shi, Z. and Yao, S., 2018. Numerical simulation of hydrate slurry flow behavior in oil-water systems based on hydrate agglomeration modelling.
Journal of Petroleum Science and Engineering,
169, pp. 393-404.
https://doi.org/10.1016/j.petrol.2018.05.073
8. Xu, D., Liu, Z., Cai, L., Tang, Y., Yu, Y. and Xu, A., 2018. A CFD-PBM approach for modeling ice slurry flow in horizontal pipes.
Chemical engineering science,
176, pp. 546-559.
https://doi.org/10.1016/j.ces.2017.11.022
9. Liangxu, Z., Fei, M., Zhaonan, M. and Peng, Z., Numerical Investigation of Flow and Heat Transfer of Ice Slurry Based on Population Balance Model.
Journal of Shanghai Jiaotong University,
53(12), pp. 1459.
https://doi.org/10.16183/j.cnki.jsjtu.2019.12.008
10. Cai, L., Liu, Z., Mi, S., Luo, C., Ma, K., Xu, A.
et al., 2019. Investigation on flow characteristics of ice slurry in horizontal 90° elbow pipe by a CFD-PBM coupled model.
Advanced Powder Technology,
30(10), pp. 2299-2310.
https://doi.org/10.1016/j.apt.2019.07.010
11. Ma, K., Liu, Z., Tang, Y., Liu, X., Yang, Y. and Yang, S., 2022. Numerical investigation on ice slurry flow in horizontal elbow pipes.
Thermal Science and Engineering Progress,
27, pp. 101083.
https://doi.org/10.1016/j.tsep.2021.101083
13. Gao, P., Li, Z., Yan, F., Chen, K. and Cao, A., 2024. Study on flow and heat transfer characteristics of salt solution ice slurry.
International Journal of Refrigeration,
159, pp. 1-16.
https://doi.org/10.1016/j.ijrefrig.2023.12.007
14. Rezaei, M. and Pakravan, H.A., 2023. Thermo-fluidic characteristics of ice slurry flows in U-bend pipes for cold thermal energy storage.
Journal of Energy Storage,
57, pp. 106224.
https://doi.org/10.1016/j.est.2022.106224
15. Rezaei, M. and Pakravan, H.A., 2023. Numerical study of ice slurry flow and heat transfer in successive U-bends as part of tubular heat exchangers.
International Journal of Thermal Sciences,
191, pp. 108357.
https://doi.org/10.1016/j.ijthermalsci.2023.108357
16. Xie, F., Guo, W. and Zhu, Y., 2023. Numerical Study on Flow-Melt Characteristics of Ice Slurry in Horizontal Straight Pipe with a Local Large Heat Flux Segment.
Energies,
16(1), pp. 476.
https://doi.org/10.3390/en16010476
17. Mi, S., Xu, F., Cai, L. and Xu, C., 2024. Study on convective melting heat transfer of a solid-liquid phase change slurry in U-shaped curved tubes.
International Communications in Heat and Mass Transfer,
154, pp. 107377.
https://doi.org/10.1016/j.icheatmasstransfer.2024.107377
18. Mi, S., Geng, S., Cai, L. and Xu, C., 2024. Investigation on the flow characteristics of a phase change material slurry in horizontal and U-shaped tubes based on CFD-PBM.
Chemical Engineering Research and Design,
201, pp. 409-424.
https://doi.org/10.1016/j.cherd.2023.12.007
19. Faghri, A. and Zhang, Y. 2006 Transport phenomena in multiphase systems. Academic Press Elsevier.
22. Gidaspow, D., Bezburuah, R. and Ding, J. 1991 Hydrodynamics of circulating fluidized beds: kinetic theory approach. Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering.
24. Bordet, A., Poncet, S., Poirier, M. and Galanis, N., 2018. Advanced numerical modeling of turbulent ice slurry flows in a straight pipe.
International Journal of Thermal Sciences,
127, pp. 294-311.
https://doi.org/10.1016/j.ijthermalsci.2018.02.004
25. ANSYS, I., 2020. Ansys® FLUENT, Release 20.0. FLUENT Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA),
26. Wang, J., Wang, S., Zhang, T. and Battaglia, F., 2018. Numerical and analytical investigation of ice slurry isothermal flow through horizontal bends.
International journal of refrigeration,
92, pp. 37-54.
https://doi.org/10.1016/j.ijrefrig.2018.05.038
27. Cai, L., Mi, S., Luo, C. and Liu, Z., 2022. Numerical investigation of hydraulic and heat transfer characteristics of two-phase ice slurry in helically coiled tubes.
Energy and Buildings,
256, pp. 111773.
https://doi.org/10.1016/j.enbuild.2021.111773
28. Li, D., Li, Z. and Gao, Z., 2019. Quadrature-based moment methods for the population balance equation: An algorithm review.
Chinese Journal of Chemical Engineering,
27(3), pp. 483-500.
https://doi.org/10.1016/j.cjche.2018.11.028
29. Yan, W.C., Luo, Z.H., Lu, Y.H. and Chen, X.D., 2012. A CFD‐PBM‐PMLM integrated model for the gas–solid flow fields in fluidized bed polymerization reactors.
AIChE Journal,
58(6), pp. 1717-1732.
https://doi.org/10.1002/aic.12705
30. Luo, H., 1995. Coalescence, breakup and liquid circulation in bubble column reactors. The University of Trondheim, Technical Report.
31. Liao, Y., Rzehak, R., Lucas, D. and Krepper, E., 2015. Baseline closure model for dispersed bubbly flow: Bubble coalescence and breakup.
Chemical engineering science,
122, pp. 336-349.
https://doi.org/10.1016/j.ces.2014.09.042
34. Lee, D.W., Yoon, E.S., Joo, M.C. and Sharma, A., 2006. Heat transfer characteristics of the ice slurry at melting process in a tube flow.
International journal of refrigeration,
29(3), pp. 451-455.
https://doi.org/10.1016/j.ijrefrig.2005.10.003