2. Villarreal, D.Y. and SL, V.B., 2018. VIV resonant wind generators.
Vortex Bladeless SL. DOI: N/A.
VortexGreenPaper_en.pdf
3. Han, P., De Langre, E., Thompson, M.C., Hourigan, K. and Zhao, J., 2023. Vortex-induced vibration forever even with high structural damping.
Journal of Fluid Mechanics,
962, p.A13.
https://doi.org/10.1017/jfm.2023.268
4. Williamson, C.H.K. and Govardhan, R., 2008. A brief review of recent results in vortex-induced vibrations.
Journal of Wind engineering and industrial Aerodynamics,
96(6-7), pp.713-735.
https://doi.org/10.1016/j.jweia.2007.06.019
5. Bernitsas, M.M., Raghavan, K., Ben-Simon, Y. and Garcia, E.M.H., 2006, January. VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow. In
International conference on offshore mechanics and arctic engineering(Vol. 47470, pp. 619-637).
https://doi.org/10.1115/1.2957913
6. Huque, Z., Zemmouri, F., Lu, H. and Kommalapati, R.R., 2024. Fluid–Structure interaction simulations of wind turbine blades with pointed tips.
Energies,
17(5), p.1090.
https://doi.org/10.3390/en17051090
7. Salvador, C.S., Teresa, J.A., Martinez, J.M., Bacasnot, M.C., Orilla, K.V., Cabana, R.J. and Ladaran, W.I., 2017, August. Design and construction of arc shaped and disc shaped pendulum for vortex bladeless wind generator. In
2017 25th International conference on systems engineering (ICSEng)(pp. 363-369). IEEE.
https://doi.org/10.1109/ICSEng.2017.39
9. Franzini, G.R. and Bunzel, L.O., 2018. A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom.
Journal of Fluids and Structures,
77, pp.196-212.
https://doi.org/10.1016/j.jfluidstructs.2017.12.007
10. Azadi Yazdi, E., 2020. Optimal control of a broadband vortex-induced vibration energy harvester.
Journal of Intelligent Material Systems and Structures,
31(1), pp.137-151.
https://doi.org/10.1177/1045389X19888711
11. Yazdi, E.A., 2018. Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine.
Smart Materials and Structures,
27(7), p.075005.
https://doi.org/10.1088/1361-665X/aac0b6
12. Hasani, M. and Rahaghi, M.I., 2022. The optimization of an electromagnetic vibration energy harvester based on developed electromagnetic damping models.
Energy Conversion and Management,
254, p.115271.
https://doi.org/10.1016/j.enconman.2022.115271
13. Mohamed, Z., Soliman, M., Feteha, M. and Saber, E., 2025. A novel optimal design approach for bladeless wind turbines considering mechanical properties of composite materials used.
Scientific Reports,
15(1), p.1355.
https://www.nature.com/articles/s41598-024-82385-9
14. Kang, H., Kook, J., Lee, J. and Kim, Y.K., 2024. A novel small-scale bladeless wind turbine using vortex-induced vibration and a discrete resonance-shifting module.
Applied Sciences,
14(18), p.8217.
https://doi.org/10.3390/app14188217
15. Awadallah, M.O., Jiang, C., el Moctar, O. and Hassan, A.A., 2025. Boosting energy harvesting efficiency from wake-induced vibration using a multi-cylinder configuration.
Applied Energy,
381, p.125181.
https://doi.org/10.1016/j.apenergy.2024.125181
16. Breen, J., Mallik, W. and Adhikari, S., 2025. Performance analysis and geometric optimization of bladeless wind turbines using wake oscillator model.
Renewable Energy, p.123549.
https://doi.org/10.1016/j.renene.2025.123549
17. Safari, M., Mohammadimehr, M. and Ashrafi, H., 2023. Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core.
Struct. Eng. Mech,
88(1), pp.1-12.
https://doi.org/10.12989/sem.2023.88.1.001
18. Cizniar, M and Fikar, M and Latifi M (2006) Matlab dynamic optimisation code dynopt. user’s guide. KIRP FCHPT STU, Bratislava. Epub ahead of print 2006.