کنترل بهینه ی ارتعاش های میله ی مولدهای بادی بدون پره

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مکانیک جامدات، دانشکده‌ی مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران.

چکیده

بحران جهانی انرژی، توجه گسترده‌ای را به سمت مولدهای بادی بدون پره (BWPGs) به‌عنوان راهکاری نوین برای تولید انرژی پاک جلب کرده است؛ که با استفاده از پدیده‌ی ارتعاش‌های القایی جریان باد، انرژی مکانیکی ناشی از نوسان‌های میله را به انرژی الکتریکی تبدیل می‌کنند. از میان عوامل مؤثر در افزایش بازده مولدهای BWPG، پایداری فرکانس طبیعی سیستم در ناحیه‌ی تشدید، اهمیت ویژه‌ای دارد. هدف پژوهش حاضر، ارائه‌ی روشی بهینه برای کنترل ارتعاش‌های مولدهای بادی بدون پره از طریق تنظیم سفتی مؤثر سازه است؛ سفتی که مستقیماً با طول مؤثر میله در ارتباط است. با کنترل پارامتر اخیر، فرکانس طبیعی سازه در مجاورت فرکانس تشدید حفظ می‌شود و در نتیجه، بیشینه‌ی توان قابل استحصال از جریان باد حاصل می‌شود. در مطالعه‌ی حاضر، تأثیر پارامترهای کلیدی، مانند سفتی، جرم، و میرایی به‌صورت تحلیلی و عددی بررسی شده است. سپس با استفاده از روش‌های بهینه‌سازی دینامیکی، ابعاد و ویژگی‌های طراحی به‌گونه‌ای تعیین شده‌اند که فرکانس طبیعی سیستم در محدوده‌ی تشدید باقی بماند. نتایج شبیه‌سازی عددی با داده‌های تجربی تطبیق یافته و اعتبار مدل تحلیلی و اثربخشی روش کنترل پیشنهادی به‌صورت کمّی تأیید شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Vibration Control of Bladeless Wind Power Generators

نویسندگان [English]

  • Mahsa Pahlevanzade
  • Mohsen Irani Rahaghi
  • Mahdi Mohammadimehr
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran.
چکیده [English]

The global energy crisis has drawn growing attention to bladeless wind power generators (BWPGs), which convert wind-induced vibrations into electricity. Their efficiency depends on keeping the natural frequency within resonance. This study presents an optimal control strategy for BWPGs using variable structural stiffness governed by the rod’s effective length. Continuous tuning keeps the natural frequency aligned with the vortex-shedding frequency, maximizing harvested power. The influence of stiffness, mass, and damping is analyzed, and design parameters such as geometry are optimized to maintain resonance under changing wind speeds. Numerical simulations agree with experiments, confirming the accuracy and effectiveness of the proposed model and optimization method.

کلیدواژه‌ها [English]

  • Vibrations
  • renewable energy
  • optimization
  • bladeless wind turbine
  • resonance region
1. Chizfahm, A., Yazdi, E.A. and Eghtesad, M., 2018. Dynamic modeling of vortex induced vibration wind turbines. Renewable Energy121, pp.632-643. https://doi.org/10.1016/j.renene.2018.01.038
2. Villarreal, D.Y. and SL, V.B., 2018. VIV resonant wind generators. Vortex Bladeless SL. DOI: N/A. VortexGreenPaper_en.pdf
3. Han, P., De Langre, E., Thompson, M.C., Hourigan, K. and Zhao, J., 2023. Vortex-induced vibration forever even with high structural damping. Journal of Fluid Mechanics962, p.A13. https://doi.org/10.1017/jfm.2023.268
4. Williamson, C.H.K. and Govardhan, R., 2008. A brief review of recent results in vortex-induced vibrations. Journal of Wind engineering and industrial Aerodynamics96(6-7), pp.713-735. https://doi.org/10.1016/j.jweia.2007.06.019
5. Bernitsas, M.M., Raghavan, K., Ben-Simon, Y. and Garcia, E.M.H., 2006, January. VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow. In International conference on offshore mechanics and arctic engineering(Vol. 47470, pp. 619-637). https://doi.org/10.1115/1.2957913
6. Huque, Z., Zemmouri, F., Lu, H. and Kommalapati, R.R., 2024. Fluid–Structure interaction simulations of wind turbine blades with pointed tips. Energies17(5), p.1090. https://doi.org/10.3390/en17051090
7. Salvador, C.S., Teresa, J.A., Martinez, J.M., Bacasnot, M.C., Orilla, K.V., Cabana, R.J. and Ladaran, W.I., 2017, August. Design and construction of arc shaped and disc shaped pendulum for vortex bladeless wind generator. In 2017 25th International conference on systems engineering (ICSEng)(pp. 363-369). IEEE. https://doi.org/10.1109/ICSEng.2017.39
8. Francis, S., Umesh, V. and Shivakumar, S., 2021. Design and analysis of vortex bladeless wind turbine. Materials Today: Proceedings47, pp.5584-5588. https://doi.org/10.1016/j.matpr.2021.03.469
9. Franzini, G.R. and Bunzel, L.O., 2018. A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom. Journal of Fluids and Structures77, pp.196-212. https://doi.org/10.1016/j.jfluidstructs.2017.12.007
10. Azadi Yazdi, E., 2020. Optimal control of a broadband vortex-induced vibration energy harvester. Journal of Intelligent Material Systems and Structures31(1), pp.137-151. https://doi.org/10.1177/1045389X19888711
11. Yazdi, E.A., 2018. Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine. Smart Materials and Structures27(7), p.075005. https://doi.org/10.1088/1361-665X/aac0b6
12. Hasani, M. and Rahaghi, M.I., 2022. The optimization of an electromagnetic vibration energy harvester based on developed electromagnetic damping models. Energy Conversion and Management254, p.115271. https://doi.org/10.1016/j.enconman.2022.115271
13. Mohamed, Z., Soliman, M., Feteha, M. and Saber, E., 2025. A novel optimal design approach for bladeless wind turbines considering mechanical properties of composite materials used. Scientific Reports15(1), p.1355. https://www.nature.com/articles/s41598-024-82385-9
14. Kang, H., Kook, J., Lee, J. and Kim, Y.K., 2024. A novel small-scale bladeless wind turbine using vortex-induced vibration and a discrete resonance-shifting module. Applied Sciences14(18), p.8217. https://doi.org/10.3390/app14188217
15. Awadallah, M.O., Jiang, C., el Moctar, O. and Hassan, A.A., 2025. Boosting energy harvesting efficiency from wake-induced vibration using a multi-cylinder configuration. Applied Energy381, p.125181. https://doi.org/10.1016/j.apenergy.2024.125181
16. Breen, J., Mallik, W. and Adhikari, S., 2025. Performance analysis and geometric optimization of bladeless wind turbines using wake oscillator model. Renewable Energy, p.123549. https://doi.org/10.1016/j.renene.2025.123549
17. Safari, M., Mohammadimehr, M. and Ashrafi, H., 2023. Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core. Struct. Eng. Mech88(1), pp.1-12. https://doi.org/10.12989/sem.2023.88.1.001
18. Cizniar, M and Fikar, M and Latifi M (2006) Matlab dynamic optimisation code dynopt. user’s guide. KIRP FCHPT STU, Bratislava. Epub ahead of print 2006.