\شماره٪٪۱
Saghir, S. and Younis, M.I., 2018. An investigation of the mechanical
behavior of initially curved microplates under electrostatic actuation.
{\it Acta
Mechanica}, {\it 229}, pp.2909-2922. https://doi.org/10.1007/s00707-018-2141-3.
\شماره٪٪۲
Wang, Y.Q., Zhao, H.L., Ye, C. and Zu, J.W., 2018. A porous microbeam model
for bending and vibration analysis based on the sinusoidal beam theory and
modified strain gradient theory.
{\it International Journal of Applied Mechanics},
{\it 10}, pp.1850059. https://doi.org/10.1142/S175882511850059X.
\شماره٪٪۳
She, G.L., Yuan, F.G. and Ren, Y.R., 2018. On wave propagation of porous
nanotubes. {\it International Journal of Engineering Science},
{\it 130}, pp.62-74.
https://doi.org/10.1016/j.ijengsci.2018.05.002.
\شماره٪٪۴
Hong, J., Wang, S., Qiu, X. and Zhang, G., 2022. Bending and wave
propagation analysis of magneto-electro-elastic functionally graded porous
microbeams. {\it Crystals},
{\it 12}, p.732. https://doi.org/10.3390/cryst12050732.
\شماره٪٪۵
Liu, Z., Yang, C., Gao, W., Wu, D. and Li, G., 2019. Nonlinear behaviour
stability of functionally graded porous arches with graphene platelets
reinforcements.
{\it International Journal of Engineering Science}, {\it 137}, pp.37-56.
https://doi.org/10.1016/j.ijengsci.2018.12.003.
\شماره٪٪۶
Dang, V.H. and Do, Q.C., 2021. Nonlinear vibration and stability of
functionally graded porous microbeam under electrostatic actuation.
{Archive of
Applied
Mechanics}, {\it 91}, pp.2301-2329. https://doi.org/10.1007/s00419-021-01884-7.
\شماره٪٪۷
Zhang, Y., Liu, B., Du, C. and Zhou, R., 2019. On the behaviors of porous
shape memory alloy beam with gradient porosity under pure bending.
{\it Journal of Materials Research},
{\it 34}, pp.282-289. https://doi.org/10.1557/jmr.2018.423.
\شماره٪٪۸
Heshmati, M. and Daneshmand, F., 2019. Vibration analysis of non-uniform
porous beams with functionally graded porosity distribution.
{\it Proceedings of the
Institution of Mechanical Engineers}.
{\it Part L: Journal of Materials: Design and
Applications}, {\it 233}, pp.1678-1697.
https://doi.org/10.1177/146442071878090.
\شماره٪٪۹
Jalaei, M. and Civalek, \"{O}., 2019. On dynamic instability of
magnetically embedded viscoelastic porous FG nanobeam.
{\it International Journal of
Engineering Science}. {\it 143}, pp.14-32.
https://doi.org/10.1016/j.ijengsci.2019.06.013.
\شماره٪٪۱۰
Xu, X., Karami, B. and Shahsavari, D., 2021. Time-dependent behavior of
porous curved nanobeam. {\it
International Journal of Engineering Science}, {\it 160},
p.103455. https://doi.org/10.1016/j.ijengsci.2021.103455.
\شماره٪٪۱۱
Amir, S., Soleimani-Javid, Z. and
Arshid, E., 2019. Size-dependent free vibration of sandwich micro beam with
porous core subjected to thermal load based on SSDBT.
{\it ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift f\"{u}r
Angewandte Mathematik und Mechanik}, {\it 99}, p.e201800334.
https://doi.org/10.1002/zamm.201800334.
\شماره٪٪۱۲
Farokhi, H. and Ghayesh, M.H., 2019. Modified couple stress theory in
orthogonal curvilinear coordinates. {\it Acta Mechanica}, {\it
230}, pp.851-869.
https://doi.org/10.1007/s00707-018-2331-z.
\شماره٪٪۱۳
Soleimani, I. and Beni, Y.T., 2018. Vibration analysis of nanotubes based
on two-node size dependent axisymmetric shell element.
{\it Archives of Civil and
Mechanical Engineering}, {\it 18}, pp.1345-1358.
https://doi.org/10.1016/j.acme.2018.04.009.
\شماره٪٪۱۴
Jiao, P., Alavi, A.H., Borchani, W. and Lajnef, N., 2018. Micro-composite
films constrained by irregularly bilateral walls: a size-dependent
post-buckling analysis. {\it Composite Structures}, {\it 195}, pp.219-231.
https://doi.org/10.1016/j.compstruct.2018.04.046.
\شماره٪٪۱۵
Hakamiha, S. and Mojahedi, M., 2017. Nonlinear analysis of microswitches
considering nonclassical theory. {\it
International Journal of Applied Mechanics}, {\it 9},
p.1750113. https://doi.org/10.1142/S1758825117501137.
\شماره٪٪۱۶
Moradi, A., Yaghootian, A., Jalalvand, M. and Ghanbarzadeh, A., 2018.
Magneto-Thermo mechanical vibration analysis of FG nanoplate embedded on visco
Pasternak foundation. {\it Journal of Computational Applied Mechanics},
{\it 49},
pp. 395-407. https://doi.org/10.22059/JCAMECH.2018.261764.300.
\شماره٪٪۱۷
Bina, R. and Mojahedi, M., 2017. Static deflection, pull-in instability and
oscillatory behavior of the electrostatically actuated microresonator with a
distributed proof mass considering non-classical theory.
{\it International Journal
of Applied Mechanics},
{\it 9}, p.1750023. https://doi.org/10.1142/S1758825117500235.
\شماره٪٪۱۸
Mahinzare, M., Ranjbarpur, H. and Ghadiri, M., 2018. Free vibration
analysis of a rotary smart two directional functionally graded piezoelectric
material in axial symmetry circular nanoplate.
{\it Mechanical Systems and Signal
Processing}, {\it 100}, pp.188-207.
https://doi.org/10.1016/j.ymssp.2017.07.041.
\شماره٪٪۱۹
Malikan, M. and Eremeyev, V.A., 2023. On time-dependent nonlinear dynamic
response of micro-elastic solids. {\it
International Journal of Engineering Science},
{\it 182}, p.103793. https://doi.org/10.1016/j.ijengsci.2022.103793.
\شماره٪٪۲۰
Al-Furjan, M., Samimi-Sohrforozani, E., Habibi, M., won Jung, D. and
Safarpour, H., 2021. Vibrational characteristics of a higher-order laminated
composite viscoelastic annular microplate via modified couple stress theory.
{\it Composite Structures}, {\it 257}, p.113152.
https://doi.org/10.1016/j.compstruct.2020.113152.
\شماره٪٪۲۱
Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B., 2021. Free vibration
and buckling analyses of FG porous sandwich curved microbeams in thermal
environment under magnetic field based on modified couple stress theory.
{\it Archives of Civil and Mechanical Engineering}, {\it 21}, pp.1-23.
https://doi.org/10.1007/s43452-020-00150-x.
\شماره٪٪۲۲
Zandekarimi, S., Asadi, B. and Rahaeifard, M., 2018. Size dependent thermal
buckling and postbuckling of functionally graded circular microplates based on
modified couple stress theory. {\it Journal of Thermal Stresses},
{\it 41}, pp.1-16.
https://doi.org/10.1080/01495739.2017.1364612.
\شماره٪٪۲۳
Shahrokhi, M., Jomehzadeh, E. and Rezaeizadeh, M., 2019. Size-dependent
green's function for bending of circular micro plates under eccentric load.
{\it Journal of Solid Mechanics}, {\it 11}, pp.14-25.
https://doi.org/10.22034/jsm.2019.664212.
\شماره٪٪۲۴
\c{S}im\c{s}ek, M. and Aydin, M., 2017. Size-dependent forced
vibration of an imperfect functionally graded (FG) microplate with porosities
subjected to a moving load using the modified couple stress theory.
{\it Composite
Structures},
{\it 160}, pp.408-421. https://doi.org/10.1016/j.compstruct.2016.10.034.
\شماره٪٪۲۵
Barati, M.R. and Shahverdi, H., 2017. Dynamic modeling and vibration
analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate
systems. {\it European Journal of Mechanics-A/Solids}, {\it 66}, pp.256-268.
https://doi.org/10.1016/j.euromechsol.2017.07.010.
\شماره٪٪۲۶
Hosseini, M., Mahinzare, M. and Ghadiri, M., 2018. Magnetic field effect on
vibration of a rotary smart size-dependent two-dimensional porous functionally
graded nanoplate.
{\it Journal of Intelligent Material Systems and Structures}, {\it 29},
pp.2885-2901. https://doi.org/10.1177/1045389X187810.
\شماره٪٪۲۷
Sharifinsab, E. and Mojahedi, M., 2018. Nonlinear vibration of size
dependent microresonators with an electrostatically actuated proof mass.
{\it International Journal of Structural Stability and
Dynamics}, {\it 18}, p.1850057
\شماره٪٪۲۸
Mao, Y.H., Shang, Y., Cen, S. and Li, C.F., 2023. An efficient 3-node
triangular plate element for static and dynamic analyses of microplates based
on modified couple stress theory with micro-inertia. {\it Engineering with
Computers}, {\it
39}, pp.3061-3084. https://doi.org/10.1007/s00366-022-01715-5.
\شماره٪٪۲۹
Mosayyebi, M., Ashenai Ghasemi, F. and Aghaee, M., 2022. Modified couple
stress theory for wave propagation in viscoelastic sandwich microplates with
FG-GPLRC core and piezoelectric face sheets as sensor and actuator.
{\it Waves in
Random and Complex Media}, pp.1-44.
https://doi.org/10.1080/17455030.2022.2106387.
\شماره٪٪۳۰
Yu, X., Maalla, A. and Moradi, Z., 2022. Electroelastic high-order
computational continuum strategy for critical voltage and frequency of
piezoelectric NEMS via modified multi-physical couple stress theory.
{\it Mechanical
Systems and Signal Processing}, {\it 165}, p.108373.
https://doi.org/10.1016/j.ymssp.2021.108373.
\شماره٪٪۳۱
Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S., 2012. Free vibration
of size-dependent Mindlin microplates based on the modified couple stress
theory. {\it Journal of Sound and Vibration}, {\it 331}, pp.94-106.
https://doi.org/10.1016/j.jsv.2011.08.020.
\شماره٪٪۳۲
Park, S. and Gao, X.L., 2008.
Variational formulation of a modified couple stress theory and its application
to a simple shear problem. {\it Zeitschrift f\"{u}r
Angewandte Mathematik und Physik}, {\it 59}, pp.904-917.
https://doi.org/10.1007/s00033-006-6073-8.
\شماره٪٪۳۳
Niknam, H. and Aghdam, M., 2015. A semi analytical approach for large
amplitude free vibration and buckling of nonlocal FG beams resting on elastic
foundation. {\it Composite Structures}, {\it 119}, pp.452-462.
https://doi.org/10.1016/j.compstruct.2014.09.023.