\شماره٪٪۱
Kumaran, R.M., Sundararajan, T. and Manohar, D.R., 2010.
Performance evaluation of second-throat diffuser for high-altitude-test
facility. {\it Journal of Propulsion and Power}, {\it 26}(2), pp.248-258.
https://doi.org/10.2514/1.43298.
\شماره٪٪۲
Park, B.H., Lim, J., Park, S., Lee, J.H. and Yoon, W.S.,
2012. Design and Analysis of a second-throat
exhaust diffuser for altitude simulation. {\it Journal of Propulsion
and Power},
{\it 28}(5), pp.1091-1104. https://doi.org/10.2514/1.B34342.
\شماره٪٪۳
Marchi, C.H., Laroca, F., Silva, A.F.C.D. and Hinckel, J.N.,
2004. Numerical solutions of flows
in rocket engines with regenerative cooling. {\it Numerical Heat
Transfer; Part A: Applications}, {\it 45}(7), pp.699-717.
https://doi.org/10.1080/10407780490424307.
\شماره٪٪۴
Ulas, A. and Boysan, E., 2013. Numerical analysis of regenerative
cooling in liquid propellant rocket engines. {\it Aerospace Science
and Technology}, {\it 24}(1), pp.187-197.
https://doi.org/10.1016/j.ast.2011.11.006.
\شماره٪٪۵
Brewster, M.Q., 1989. Radiation-stagnation flow model aluminized
solid rocket motor internal insulator heat transfer. {\it Journal
of Thermophysics and Heat Transfer}, {\it 3}(2), pp.132-139.
https://doi.org/10.2514/3.139.
\شماره٪٪۶
Li, K.Z., Shen, X.T., Li, H.J., Zhang, S.Y., Feng, T. and Zhang, L.L.,
2011. Ablation of the carbon/carbon composite
nozzle-throats in a small solid rocket motor. {\it Carbon}, {\it 49}(4),
pp.1208-1215. https://doi.org/10.1016/j.carbon.2010.11.037.
\شماره٪٪۷
Fouladi, N., Mirbabaei, S.A. and Khosroanjom, M., 2019.
Experimental Study of the supersonic exhaust diffuser spray
cooling system. {\it Amirkabir Journal of Mechanical Engineering},
{\it 52}(7), pp.61-70. [In Persian].
https://doi.org/10.22060/mej.2019.15138.6038.
\شماره٪٪۸
Massier, P.F. and Roschke, E.J., 2013. Experimental investigation
of exhaust diffusers for rocket engines. {\it Progress In Astronautics
and Rocketry: Liquid Rockets and Propellants}, {\it 2}, pp.3-75.
https://doi.org/10.2514/4.864759.
\شماره٪٪۹
Yim, K., Kim, H. and Kim, S., 2014. A Numerical study on
flow and heat transfer characteristics of supersonic second throat
exhaust diffuser for high altitude simulation. {\it Journal of the
Korean Society of Propulsion Engineers}, {\it 18}(5), pp.70-78.
https://doi.org/10.6108/KSPE.2014.18.5.070.
\شماره٪٪۱۰
Group, P.R., 2016. Arash22 motor development serial tests,
space transportation research institute (STRI). Upper Stage IranSat2
Project, Report Number: STRI-SC9SDC11Y/01-R-I-03/49. [In Persian].
\شماره٪٪۱۱
Farahani, M., Fouladi, N. and Mirbabaei, A., 2019. Design
and analysis of a cooling system for a supersonic exhaust diffuser.
{\it Proceedings of the Institution of Mechanical Engineers, Part
G: Journal of Aerospace Engineering}, {\it 233}(14), pp.5253-5263.
https://doi.org/10.1177/0954410019840970.
\شماره٪٪۱۲
Group, P.R., 2020. Thermal protection of diffuser metal
body using a cooling system. Tehran, Space Transportation Research
Institute, Report Number: Stri-Ssd9980-01-R. [In Persian].
\شماره٪٪۱۳
Jo, S., Han, S., Kim, H.J. and Yim, K.J.,
2021. Numerical study on the flow and heat
transfer characteristics of a second throat exhaust diffuser
according to variations in operating pressure and geometric shape.
{\it Energies}, {\it 14}(3), https://doi.org/10.3390/en14030532.
\شماره٪٪۱۴
Fouladi, N., Farahani, M. and Mahdian, M., 2022. Numerical
Investigation of coolant flow pressure effect on the water jacket
design for large scale diffuser at high heat fluxes. {\it Space Science,
Technology} \& {\it Applications}, {\it 2}(1), pp.34-50. [In Persian].
https://doi.org/10.22034/JSSTA.2022.328818.1077.
\شماره٪٪۱۵
Mahdian, M., 2021. Design and analysis of an optimal cooling
system for a supersonic exhaust diffuser using a water jacket.
Master's Thesis, Dept. Aerospace Eng., Sharif Univ. of Tech.,
Tehran, Iran. [In Persian].
\شماره٪٪۱۶
Dirker, J. and Meyer, J.P., 2004. Convection heat transfer
in concentric annuli. {\it Experimental Heat Transfer}, {\it 17}(1), pp.
19-29. https://doi.org/10.1080/08916150490246528.
\شماره٪٪۱۷
Swamee, P.K., Aggarwal, N. and Aggarwal, V., 2008. Optimum
design of double pipe heat exchanger. {\it International Journal
of Heat and Mass Transfer}, {\it 51}(9-10), pp.2260-2266.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.028.
\شماره٪٪۱۸
Dittus, F.W. and Boelter, L.M.K., 1930. University of california
publications on engineering. {\it University of California Publications
in Engineering}, {\it 2}, p.371.
\شماره٪٪۱۹
Wiegand, J.H., 1945. Discussion on annular heat transfer
coeffcients for turbulent flow. {\it AIChE}, {\it 41}, pp.147-153.
https://cir.nii.ac.jp/crid/1573950399020515328.
\شماره٪٪۲۰
Gnielinski, V., 2009. Heat transfer coefficients for turbulent
flow in concentric annular ducts. {\it Heat Transfer Engineering},
{\it 30}(6), pp.431-436. https://doi.org/10.1080/01457630802528661.
\شماره٪٪۲۱
Jones, O.C. and Leung, J.C.M., 1981. An improvement in
the calculation of turbulent friction in smooth concentric annuli.
{\it Journal of Fluids Engineering}, {\it 103}(4), pp.615-623.
https://doi.org/10.1115/1.3241781.
\شماره٪٪۲۲
Bhatti, M.S., 1987. {\it Turbulent and Transition Flow Convective
Heat Transfer In Ducts}. Handbook of single-phase convective
heat transfer [Preprint].
https://cir.nii.ac.jp/crid/1573387448915440896.
\شماره٪٪۲۳
Kaneda, M., Yu, B., Ozoe, H. and Churchill, S.W., 2003.
The characteristics of turbulent
flow and convection in concentric circular annuli. {\it Part I: Flow
International Journal of Heat and Mass Transfer}, {\it 46}(26), pp.
5045-5057. https://doi.org/10.1016/S0017-9310(03)00365-X.
\شماره٪٪۲۴
Bergman, T.L., Incropera, F.P., DeWitt, D.P. and Lavine, A.S.,
2011. {\it Fundamentals of Heat and Mass Transfer}. 6 Ed., John Wiley
\& Sons. https://books.google.com/books?id=vvyIoXEywMoC.
\شماره٪٪۲۵
MATLAB version 9.4.0.813654 (R2018a), In, The Mathworks,
Inc., Natick, Massachusetts.
\شماره٪٪۲۶
Ansys Workbench (2019 R1)- Fluid Flow (Fluent)-in 2019.
\شماره٪٪۲۷
Vicente, P.G., Garc{\i}a,
A. and Viedma, A., 2004. Experimental
investigation on heat transfer and frictional characteristics
of spirally corrugated tubes in turbulent flow at different Prandtl
numbers. {\it International Journal of Heat and Mass Transfer}, {\it
47}(4), pp.
671-681. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.005.
\شماره٪٪۲۸
C\'{o}rcoles-
Tendero, J.,
Belmonte, J., Molina, A. and Almendros-Ib\'{a}\~{n}ez, J.,
2018. Numerical simulation
of the heat transfer process in a corrugated tube. {\it International
Journal of Thermal Sciences}, {\it 126}(July 2017), pp.
125-136. https://doi.org/10.1016/j.ijthermalsci.2017.12.028.
\شماره٪٪۲۹
Guide, A.F.T., 2013. Ansys fluent tutorial guide. Ansys
INC nd, 15.
\شماره٪٪۳۰
Fouladi, N., Mohamadi, A. and Rezaei, H., 2016. Numerical
design and analysis of supersonic exhaust diffuser in altitude
test simulator. {\it Modares Mechanical Engineering}, {\it 16}(8), pp.159-168.
[In Persian]. http://dorl.net/dor/20.1001.1.10275940.1395.16.8.31.8.
\شماره٪٪۳۱
Mirbabaei, A., 2018. Design and analysis of hot gas diffuser
for high altitude simulation. Master of Science Thesis, Department
of Aerospace Engineering, Sharif University of Technology, Tehran,
Sharif University of Technology. [In Persian].